Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1027–1030 | Cite as

Generation of Frequency Combs by Quantum Cascade Lasers Emitting in the 8-μm Wavelength Range

  • V. V. Dudelev
  • D. A. Mikhailov
  • A. V. Babichev
  • S. N. Losev
  • D. V. Chistyakov
  • E. A. Kognovitskaya
  • D. D. Avrov
  • S. O. Slipchenko
  • A. V. Lyutetskii
  • N. A. Pikhtin
  • A. G. Gladyshev
  • L. Ya. Karachinsky
  • I. I. Novikov
  • V. I. Kuchinskii
  • A. Yu. Egorov
  • G. S. SokolovskiiEmail author
Article

Abstract

We have studied the generation of frequency combs by quantum cascade lasers (QCLs) emitting in the 8-μm wavelength range. Results showed the presence of a self-pulsation regime near the lasing threshold. Further increase in the pumping current led to a sharp increase in width of the lasing spectrum, which allowed us to obtain frequency combs with a spectral width exceeding 1.5 THz. This behavior of QCLs can be explained by radiation absorption at the stripe edge that is related to the penetration of waveguide mode into unpumped regions.

Keywords:

quantum cascade laser frequency comb Q-switching mode locking. 

Notes

FUNDING

This study was supported by the Ministry of Science and Higher Education of the Russian Federation, unique project identifier no. RFMEFI61617X0074.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    J. Reichert, M. Niering, R. Holzwarth, M. Weitz, Th. Udem, and T. W. Hänsch, Phys. Rev. Lett. 84, 3232 (2000).  https://doi.org/10.1103/physrevlett.84.3232 CrossRefADSGoogle Scholar
  2. 2.
    R. Holzwarth, Th. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, Phys. Rev. Lett. 85, 2264 (2000).  https://doi.org/10.1103/physrevlett.85.2264 CrossRefADSGoogle Scholar
  3. 3.
    J. Hillbrand, P. Jouy, M. Beck, and J. Faist, Opt. Lett. 43, 1746 (2018). https://doi.org/10.1364/OL.43.001746 CrossRefADSGoogle Scholar
  4. 4.
    J. Faist, G. Villares, G. Scalari, M. Rösch, C. Bonzon, A. Hugi, and M. Beck, Nanophotonics 5, 272 (2016).  https://doi.org/10.1515/nanoph-2016-0015 CrossRefGoogle Scholar
  5. 5.
    J. Hillbrand, A. M. Andrews, H. Detz, G. Strasser, and B. Schwarz, Nat. Photon. 13, 101 (2019).  https://doi.org/10.1038/s41566-018-0320-3 CrossRefADSGoogle Scholar
  6. 6.
    F. Capasso, C. Gmachl, R. Paiella, A. Tredicucci, A. L. Hutchinson, D. L. Sivco, J. N. Baillargeon, A. Y. Cho, and H. C. Liu, IEEE J. Sel. Top. Quant. Electron. 6, 931 (2000).  https://doi.org/10.1109/2944.902142 CrossRefADSGoogle Scholar
  7. 7.
    C. Y. Wang, L. Kuznetsova, V. M. Gkortsas, L. Diehl, F. X. Kärtner, M. A. Belkin, A. Belyanin, X. Li, D. Ham, H. Schneider, P. Grant, C. Y. Song, S. Haffouz, Z. R. Wasilewski, H. C. Liu, and F. Capasso, Opt. Expess 17, 12929 (2009).  https://doi.org/10.1364/oe.17.012929 CrossRefADSGoogle Scholar
  8. 8.
    A. Gordon, C. Y. Wang, L. Diehl, F. X. Kartner, A. Belyanin, D. Bour, S. Corzine, G. Häfler, H. C. Liu, H. Schneider, T. Maier, M. Troccoli, J. Faist, and F. Capasso, Phys. Rev. A 77, 053804 (2008).  https://doi.org/10.1103/PhysRevA.77.053804 CrossRefADSGoogle Scholar
  9. 9.
    J. Bai and D. S. Citrin, J. Appl. Phys. 106, 031101 (2009).  https://doi.org/10.1063/1.3180960 CrossRefADSGoogle Scholar
  10. 10.
    M. A. Talukder and C. R. Menyuk, Opt. Expess 18, 5639 (2010).  https://doi.org/10.1364/oe.18.005639 CrossRefADSGoogle Scholar
  11. 11.
    A. V. Babichev, A. G. Gladyshev, A. V. Filimonov, V. N. Nevedomskii, A. S. Kurochkin, E.S. Kolodeznyi, G. S. Sokolovskii, V. E. Bugrov, L. Ya. Karachinsky, I. I. Novikov, A. Bousseksou, and A. Yu. Egorov, Tech. Phys. Lett. 43, 666 (2017).  https://doi.org/10.1134/S1063785017070173 CrossRefADSGoogle Scholar
  12. 12.
    V. V. Dudelev, S. N. Losev, V. Yu. Mylnikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, Tech. Phys. 63, 1656 (2018).  https://doi.org/10.1134/S1063784218110087 CrossRefGoogle Scholar
  13. 13.
    V. V. Dudelev, S. N. Losev, V. Yu. Mylnikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, Opt. Spectrosc. 125, 402 (2018).  https://doi.org/10.1134/S0030400X18090096 CrossRefADSGoogle Scholar
  14. 14.
    V. V. Dudelev, S. N. Losev, V. Yu. Mylnikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, Phys. Solid State 60, 2291 (2018).  https://doi.org/10.1134/S1063783418110057 CrossRefADSGoogle Scholar
  15. 15.
    V. V. Dudelev, S. N. Losev, V. Yu. Mylnikov, A. V. Babichev, E. A. Kognovitskaya, S. O. Slipchenko, A. V. Lyutetskii, N. A. Pikhtin, A. G. Gladyshev, L. Ya. Karachinsky, I. I. Novikov, A. Yu. Egorov, V. I. Kuchinskii, and G. S. Sokolovskii, J. Phys.: Conf. Ser. 1135, 012073 (2018).  https://doi.org/10.1088/1742-6596/1135/1/012073 CrossRefGoogle Scholar
  16. 16.
    A. V. Babichev, A. G. Gladyshev, E. S. Kolodeznyi, A. S. Kurochkin, G. S. Sokolovskii, V. E. Bougrov, L. Ya. Karachinsky, I. I. Novikov, V. V. Dudelev, S. O. Slipchenko, A. V. Lyutetskii, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, N. A. Pikhtin, and A. Y. Ego-rov, J. Phys.: Conf. Ser. 1124, 041029 (2018).  https://doi.org/10.1088/1742-6596/1124/4/041029 CrossRefGoogle Scholar
  17. 17.
    N. N. Vuković, J. Radovanović, V. Milanović, and D. L. Boiko, IEEE J. Sel. Top. Quant. Electron. 23, 1200616 (2017).  https://doi.org/10.1109/JSTQE.2017.2699139 CrossRefGoogle Scholar
  18. 18.
    Y. Dikmelik, J. B. Khurgin, M. D. Escarra, P. Q. Liu, A. J. Hoffman, K. J. Franz, C. F. Gmachl, J. Fan, and X. Wang, in Proceedings of the Conference on Lasers and Electro-Optics and Conference on Quantum Electronics and Laser Science (MD, USA, Baltimore, 2009), p. JTuD23.  https://doi.org/10.1364/CLEO.2009.JTuD23
  19. 19.
    A. Lyakh, R. Maulini, A. Tsekoun, R. Go, and C. K. N. Patel, Appl. Phys. Lett. 92, 211108 (2008).  https://doi.org/10.1063/1.2937207 CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Dudelev
    • 1
  • D. A. Mikhailov
    • 2
  • A. V. Babichev
    • 1
  • S. N. Losev
    • 1
  • D. V. Chistyakov
    • 3
  • E. A. Kognovitskaya
    • 1
    • 2
  • D. D. Avrov
    • 2
  • S. O. Slipchenko
    • 1
  • A. V. Lyutetskii
    • 1
  • N. A. Pikhtin
    • 1
  • A. G. Gladyshev
    • 4
  • L. Ya. Karachinsky
    • 3
    • 4
  • I. I. Novikov
    • 3
    • 4
  • V. I. Kuchinskii
    • 1
  • A. Yu. Egorov
    • 3
  • G. S. Sokolovskii
    • 1
    Email author
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.St. Petersburg Electrotechnical University LETISt. PetersburgRussia
  3. 3.ITMO UniversitySt. PetersburgRussia
  4. 4.Connector Optics LLCSt. PetersburgRussia

Personalised recommendations