Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 1047–1049 | Cite as

Studying Near-Surface Layers of Germanium Implanted with Cobalt Ions

  • V. V. BazarovEmail author
  • V. A. Shustov
  • N. M. Lyadov
  • I. A. Faizrakhmanov
  • I. V. Yanilkin
  • S. M. Khantimerov
  • R. R. Garipov
  • R. R. Fatykhov
  • N. M. Suleimanov
  • V. F. Valeev
Article
  • 16 Downloads

Abstract

Results of an investigation of the surface of germanium nanostructured by means of ion implantation are presented. Single-crystalline germanium (c-Ge) plates were irradiated by 40-keV cobalt Co+ ions in a dose range of (2–8) × 1016 ion/cm2. Evolution of the germanium surface morphology with increasing ion dose was studied by method of scanning electron microscopy. It is established that an increase in the ion implantation dose is accompanied by gradual formation of a surface layer consisting of spherical particles with diameters of ~150 nm. Analysis of the X-ray diffraction patterns of samples was indicative of the appearance of nanosized cobalt germanide (CoGe) particles in the ion-implanted surface layer.

Keywords:

nanostructured germanium ion implantation lithium ion batteries. 

Notes

FUNDING

This study was supported in part by the Russian Foundation for Basic Research jointly with the Republic of Tatarstan, project no. 18-48-160027_r_a. The XRD study was supported by a state order to the Kazan Scientific Center of the Russian Academy of Sciences (Tatarstan).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    L. Romano, G. Impellizzeri, M. V. Tomasello, F. Giannazzo, C. Spinella, and M. G. Grimaldi, J. Appl. Phys. 107, 084314 (2010).  https://doi.org/10.1063/1.3372757 ADSCrossRefGoogle Scholar
  2. 2.
    G. G. Zakirov, I. B. Khaibullin, and M. M. Zaripov, Sov. Phys. Semicond. 17, 150 (1983).Google Scholar
  3. 3.
    N. G. Rudawski, B. L. Darby, B. R. Yates, K. S. Jones, R. G. Elliman, and A. A. Volinsky, Appl. Phys. Lett. 100, 083111 (2012).  https://doi.org/10.1063/1.3689781 ADSCrossRefGoogle Scholar
  4. 4.
    M. E. Davis, Nature (London, U.K.) 417, 813 (2002).  https://doi.org/10.1038/nature00785 ADSCrossRefGoogle Scholar
  5. 5.
    D. Cavalcoli, B. Fraboni, G. Impellizzeri, L. Romano, E. Scavetta, and M. G. Grimaldi, Microporous Mesoporous Mater. 196, 175 (2014).  https://doi.org/10.1016/j.micromeso.2014.05.013 CrossRefGoogle Scholar
  6. 6.
    J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
  7. 7.
    www.trim.org.Google Scholar
  8. 8.
    I. H. Wilson, J. Appl. Phys. 53, 1698 (1982).  https://doi.org/10.1063/1.331636 ADSCrossRefGoogle Scholar
  9. 9.
    L. Lutterotti, Nucl. Instrum. Methods Phys. Res., Sect. B 268, 334 (2010).  https://doi.org/10.1016/j.nimb.2009.09.053 CrossRefGoogle Scholar
  10. 10.
    http://maud.radiographema.eu.Google Scholar
  11. 11.
    N. Audebrand, M. Ellner, and E. J. Mittemeijer, Powder Diffract. 15, 120 (2000).  https://doi.org/10.1017/S0885715600010964 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Bazarov
    • 1
    Email author
  • V. A. Shustov
    • 1
  • N. M. Lyadov
    • 1
  • I. A. Faizrakhmanov
    • 1
  • I. V. Yanilkin
    • 1
    • 2
  • S. M. Khantimerov
    • 1
  • R. R. Garipov
    • 1
  • R. R. Fatykhov
    • 1
  • N. M. Suleimanov
    • 1
    • 3
  • V. F. Valeev
    • 1
  1. 1.Kazan E.K. Zavoisky Physical Technical Institute, Kazan Scientific Center, Russian Academy of SciencesKazanRussia
  2. 2.Kazan Federal UniversityKazanRussia
  3. 3.Kazan State Power Engineering UniversityKazanRussia

Personalised recommendations