Technical Physics Letters

, Volume 45, Issue 10, pp 1016–1019 | Cite as

Selective Sensors of Nitrogen Dioxide Based on Thin Tungsten Oxide Films under Optical Irradiation

  • A. V. AlmaevEmail author
  • N. N. Yakovlev
  • E. V. Chernikov
  • O. P. Tolbanov


It is shown that NO2 present in air, beginning at a concentration of 1 ppm, can be selectively detected by sensors based on Au/WO3:Au thin films activated by laser diode radiation with maximum intensity at 400 nm instead of constant heating. The radiation-activated photodesorption reduces the time of sensor response to NO2. A high humidity of air under conditions of room-temperature irradiation additionally increases the device sensitivity to NO2 due to the appearance of additional adsorption sites. The absence of a sensor response to reducing gases and varying oxygen concentration in the atmosphere is caused by the photodesorption of chemisorbed  \({\text{O}}_{2}^{ - }\) species during their interaction with holes generated in intrinsic optical transitions in the near-surface region of WO3 film.


nitrogen dioxide tungsten trioxide thin films magnetron sputtering optical radiation. 



The authors declare that they have no conflict of interest.


  1. 1.
    O. V. Anisimov, V. I. Gaman, N. K. Maksimova, Yu. P. Najden, V. A. Novikov, E. Yu. Sevast’yanov, F. V. Rudov, and E. V. Chernikov, Semiconductors 44, 366 (2010). ADSCrossRefGoogle Scholar
  2. 2.
    O. V. Anisimov, N. K. Maksimova, Yu. P. Naiden, V. A. Novikov, E. Yu. Sevast’yanov, F. V. Rudov, and E. V. Chernikov, Russ. J. Phys. Chem. A 84, 1220 (2010). CrossRefGoogle Scholar
  3. 3.
    S. Kabcum, N. Kotchasak, D. Channei, A. Tuantranont, A. Wisitsoraat, S. Phanichphant, and C. Liewhiran, Sens. Actuators, B 252, 523 (2017). CrossRefGoogle Scholar
  4. 4.
    F. F. Vol’kenshtein, Electronic Processes on the Surface of Semiconductors during Chemisorption (Nauka, Moscow, 1987) [in Russian].Google Scholar
  5. 5.
    T. Saidi, D. Palmowski, S. Babicz-Kiewlicz, T. G. Welearegay, N. El Bari, R. Ionescu, J. Smulko, and B. Bouchikhi, Sens. Actuators, B 273, 1719 (2018). CrossRefGoogle Scholar
  6. 6.
    E. Espid, A. S. Noce, and F. Taghipour, J. Photochem. Photobiol., A 374, 95 (2019). CrossRefGoogle Scholar
  7. 7.
    S. I. Rembeza, T. V. Svistova, N. N. Kosheleva, S. V. Ov-syannikov, and V. M. K. Al Tameemi, Tech. Phys. Lett. 41, 1128 (2015 ADSCrossRefGoogle Scholar
  8. 8.
    P. P. González-Borrero, F. Sato, A. N. Medina, M. L. Baesso, A. C. Bento, G. Baldissera, C. Persson, G. A. Niklasson, C. G. Granqvist, and A. Ferreira da Silva, Appl. Phys. Lett. 96, 061909 (2010). ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Chizhov, M. N. Rumyantseva, R. B. Vasiliev, D. G. Filatova, K. A. Drozdov, I. V. Krylov, A. V. Marchevsky, O. M. Karakulina, A. M. Abakumov, and A. M. Gaskov, Thin Solid Films 618, 253 (2016). ADSCrossRefGoogle Scholar
  10. 10.
    A. S. Chizhov, N. E. Mordvinova, M. N. Rumyantseva, I. V. Krylov, K. A. Drozdov, X. Li, and A. M. Gas’kov, Russ. J. Inorg. Chem. 63, 512 (2018). CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. V. Almaev
    • 1
    Email author
  • N. N. Yakovlev
    • 1
  • E. V. Chernikov
    • 1
  • O. P. Tolbanov
    • 1
  1. 1.Tomsk State UniversityTomskRussia

Personalised recommendations