Technical Physics Letters

, Volume 45, Issue 10, pp 984–988 | Cite as

The Dynamic Strength of ZrO2-Based Ceramic Materials Manufactured by Additive Technology

  • V. V. Promakhov
  • A. S. Savinykh
  • Ya. A. DubkovaEmail author
  • N. A. Shul’ts
  • A. S. Zhukov
  • S. V. Razorenov


Some specimens of zirconia-based ceramic and ceramic composite materials were manufactured by additive technologies. The experimental studies of the manufactured specimens under shock-wave loading were performed. Using an analysis of the full wave profiles recorded for these specimens on a laser interferometer in the process of their shock compression with an amplitude of 6.8 and 13.8 GPa, the Hugoniot elastic limit and spallation strength of ceramics were determined.


additive technologies ceramic strength dynamic loading. 



The work on the manufacturing and study of nanostructured ceramic specimens was supported by the Russian Scientific Foundation, project no. 18-79-00153. The work on the dynamic loading of specimens was performed within a state order (state registration no. 0089-2014-0016) according to the Program of the Presidium of the Russian Academy of Sciences “Condensed Matter and Plasma at High Energy Densities,” the research area “Fast Physicochemical Transformations and Destruction of Solids and Liquids,” on the equipment of the Moscow Regional Explosion Center of Collective Use of the Russian Academy of Sciences.


The authors declare that they have no conflict of interest.


  1. 1.
    V. A. Grigoryan, I. F. Kobylkin, V. M. Marinin, and E. N. Chistyakov, in Materials and Protective Structures for Local and Individual Reservations, Ed. by V. A. Grigoryan (RadioSoft, Moscow, 2008) [in Russian].Google Scholar
  2. 2.
    V. Promakhov, A. Zhukov, Y. Dubkova, I. Zhukov, S. Kovalchuk, T. Zhukova, and N. Savkin, Materials 11, 2361 (2018).ADSCrossRefGoogle Scholar
  3. 3.
    V. V. Promakhov, A. S. Zhukov, A. B. Vorozhtsov, N. A. Shul’ts, S. V. Koval’chuk, S. V. Kozhevnikov, A. V. Olisov, and V. A. Klimenko, Russ. Phys. J. 62 (5) (2019, in press).Google Scholar
  4. 4.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, in Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  5. 5.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).ADSCrossRefGoogle Scholar
  6. 6.
    A. S. Savinykh, S. V. Razorenov, and G. I. Kanel’, in Proceedings of the Conference on Physics of Extreme States of Matter-2002, Ed. by V. E. Fortov, V. P. Efremov, K. V. Khishchenko, V. G. Sultanov, A. I. Temrokov, G. I. Kanel’, and V. B. Mintsev (Chernogolovka, 2002), p. 77.Google Scholar
  7. 7.
    V. V. Milyavskii, A. S. Savinykh, F. A. Akopov, L. B. Borovkova, T. I. Borodina, G. E. Val’yano, V. S. Ziborov, E. S. Lukin, and N. A. Popova, High Temp. 49, 685 (2011).CrossRefGoogle Scholar
  8. 8.
    D. E. Grady and T. Mashimo, J. Appl. Phys. 71, 4868 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    T. Mashimo, A. Nakamura, M. Kodama, K. Kusaba, K. Fukuoka, and Y. Syono, J. Appl. Phys. 77, 5060 (1995).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Promakhov
    • 1
  • A. S. Savinykh
    • 2
  • Ya. A. Dubkova
    • 1
    Email author
  • N. A. Shul’ts
    • 1
  • A. S. Zhukov
    • 1
  • S. V. Razorenov
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations