Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 970–972 | Cite as

Observation of Laser-Induced Spark in the Density Jump in a Gas-Jet Target

  • A. N. NechaiEmail author
  • A. A. Perekalov
  • N. I. Chkhalo
  • N. N. Salashchenko
Article
  • 8 Downloads

Abstract

In the design of powerful laser-plasma sources of extreme ultraviolet radiation with a gas jet as the target, the problem of degradation of gas nozzles is topical. Degradation is observed due to insufficient distance from the generation zone of the laser-induced spark to the nozzle exit. The comprehensive solution to this problem is proposed by forming the laser-induced spark in the density jumps that are generated upon deceleration of the supersonic gas jet. In such a density jump, the laser-induced spark is obtained and measurements of emission radiation intensity are performed.

Keywords:

extreme ultraviolet radiation degradation of gas nozzles density jumps laser-induced spark. 

Notes

FUNDING

This work was supported by the Russian Science Foundation, project no. 17-12-01227.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    A. Bartnik, H. Fiedorowicz, P. Wachulak, and T. Fok, Laser Part. Beams 36, 286 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    D. A. Borisevichus, V. V. Zabrodskii, S. G. Kalmykov, M. E. Sasin, and R. P. Seisyan, Tech. Phys. Lett. 43, 67 (2017).ADSCrossRefGoogle Scholar
  3. 3.
    N. I. Chkhalo, S. A. Garakhin, S. V. Golubev, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, N. N. Salashchenko, M. N. Toropov, N. N. Tsybin, A. V. Vodopyanov, and S. Yulin, Appl. Phys. Lett. 112, 221101 (2018).ADSCrossRefGoogle Scholar
  4. 4.
    N. I. Chkhalo, S. A. Garakhin, A. Ya. Lopatin, A. N. Nechay, A. E. Pestov, V. N. Polkovnikov, N. N. Salashchenko, N. N. Tsybin, and S. Yu. Zuev, AIP Adv. 8, 105003 (2018).ADSCrossRefGoogle Scholar
  5. 5.
    R. Rakowski, A. Bartnik, H. Fiedorowicz, F. D. G. de Dortan, R. Jarocki, J. Kostecki, and P. Wachulak, Appl. Phys. B 101, 773 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    H. Komori, Y. Ueno, H. Hoshino, T. Ariga, G. Soumagne, A. Endo, and H. Mizoguchi, Appl. Phys. B 83, 213 (2006).ADSCrossRefGoogle Scholar
  7. 7.
    K. A. Schultz, V. L. Kantsyrev, A. S. Safronova, J. J. Moschella, P. Wiewior, V. V. Shlyaptseva, and M. C. Cooper, Phys. Plasmas 23, 101207 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    L. G. Loitsyanskii, Fluid and Gas Mechanics (Nauka, Moscow, 1978) [in Russian].Google Scholar
  9. 9.
    N. G. Korobeishchikov, P. A. Skovorodko, V. V. Kalyada, A. A. Shmakov, and A. E. Zarvin, AIP Conf. Proc. 1628, 885 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    N. I. Chkhalo, S. V. Golubev, D. Mansfeld, N. N. Salashchenko, L. A. Sjmaenok, and A. V. Vodopyanov, J. Micro/Nanolith. MEMS MOEMS 11, 021123 (2012).Google Scholar
  11. 11.
    I. P. Ginzburg, Aerogasdynamics: A Short Course (Vyssh. Shkola, Moscow, 1966) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. N. Nechai
    • 1
    Email author
  • A. A. Perekalov
    • 1
    • 2
  • N. I. Chkhalo
    • 1
  • N. N. Salashchenko
    • 1
  1. 1.Institute for Physics of Microstructures, Russian Academy of SciencesNizhny NovgorodRussia
  2. 2.Lobachevsky State University of Nizhny NovgorodNizhny NovgorodRussia

Personalised recommendations