Advertisement

Technical Physics Letters

, Volume 45, Issue 10, pp 981–983 | Cite as

Determining the Static Dielectric Constant of Individual Hemoglobin Molecules by Electrostatic Force Microscopy

  • N. A. DavletkildeevEmail author
  • D. V. Sokolov
  • E. Yu. Mosur
  • A. A. Lopandina
  • V. V. Bolotov
Article
  • 21 Downloads

Abstract

A technique for determination of the dielectric constant of individual hemoglobin molecules is presented. It is based on modeling the profiles of their images obtained using electrostatic force microscopy. The obtained values of the static dielectric constant are in agreement with the known literature data. The proposed method can be adapted to determine the dielectric characteristics of individual molecules of various proteins.

Keywords:

hemoglobin electrostatic force microscopy dielectric permittivity. 

Notes

FUNDING

The work was performed within a government assignment to the Omsk Scientific Center, Siberian Branch, Russian Academy of Sciences, within the Basic Scientific Research Program for State Academies for 2013–2020 (registration number in EGISU NIOKTR system, AAAAA17-117041210227-8).

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    F. Bibi, M. Villain, C. Guillaume, B. Sorli, and N. Gontard, Sensors 16, 1232 (2016).  https://doi.org/10.3390/s16081232 CrossRefGoogle Scholar
  2. 2.
    Yu. D. Zhao, Y. H. Bi, W. D. Zhang, and Q. M. Luo, Talanta 65, 489 (2005).  https://doi.org/10.1016/j.talanta.2004.06.028 CrossRefGoogle Scholar
  3. 3.
    D. Esteban-Ferrer, M. A. Edwards, L. Fumagalli, A. Jurez, and G. Gomila, ACS Nano 8, 9843 (2014).  https://doi.org/10.1021/nn5041476 CrossRefGoogle Scholar
  4. 4.
    N. A. Davletkildeev, D. V. Stetsko, V. V. Bolotov, Y. A. Stenkin, P. M. Korusenko, and S. N. Nesov, Mater. Lett. 161, 534 (2015).  https://doi.org/10.1016/j.matlet.2015.09.045 CrossRefGoogle Scholar
  5. 5.
    C. Staii and A. T. Johnson, Nano Lett. 4, 859 (2004).  https://doi.org/10.1021/nl049748w ADSCrossRefGoogle Scholar
  6. 6.
    N. A. Davletkildeev, D. V. Sokolov, I. A. Lobov, and V. V. Bolotov, Tech. Phys. Lett. 43, 205 (2017).  https://doi.org/10.21883/PJTF.2017.04.44297.16489 ADSCrossRefGoogle Scholar
  7. 7.
    L. Fumagalli, G. Gramse, D. Esteban-Ferrer, M. A. Edwards, and G. Gomila, Appl. Phys. Lett. 96, 183107 (2010).  https://doi.org/10.1063/1.3427362 ADSCrossRefGoogle Scholar
  8. 8.
    R. Pethig and D. B. Kell, Phys. Med. Biol. 32, 933 (1987).CrossRefGoogle Scholar
  9. 9.
    T. Simonson, Rep. Prog. Phys. 66, 737 (2003).  https://doi.org/10.1088/0034-4885/66/5/202 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. A. Davletkildeev
    • 1
    • 2
    Email author
  • D. V. Sokolov
    • 1
  • E. Yu. Mosur
    • 1
    • 2
  • A. A. Lopandina
    • 2
  • V. V. Bolotov
    • 1
    • 2
  1. 1.Omsk Scientific Center, Siberian Branch, Russian Academy of SciencesOmskRussia
  2. 2.Dostoevsky Omsk State UniversityOmskRussia

Personalised recommendations