Technical Physics Letters

, Volume 45, Issue 10, pp 959–962 | Cite as

Studying the Effect of Doping with Nickel on Silicon-Based Solar Cells with a Deep pn-Junction

  • M. K. BakhadyrkhanovEmail author
  • S. B. Isamov
  • Z. T. Kenzhaev
  • S. V. Koveshnikov


It has been shown that the doping of the front side of a solar cell with a deep-level pn junction with nickel atoms increases short-circuit current density Jsc by 89% and open-circuit voltage Voc by 19.7%. Additional thermal treatment at 700°C for 1 h increases Jsc by 98.4% and Voc by 13.18%. It is presumed that the IR radiation conversion efficiency grows because nickel atoms form clusters, these being getter centers for uncontrolled recombinant impurities.


photocell silicon nickel doping thermal annealing clusters collection coefficient lifetime. 



This work was performed within the framework of project no. OT-F2-50 “Development of Scientific Foundations for the Formation of AIIBVI and AIIIBV Unit Cells in a Silicon Lattice—a New Approach in the Synthesis of Promising Materials for Photoenergetics and Photonics.”


The authors declare that they have no conflict of interest.


  1. 1.
    B. I. Fuks, Semiconductors 48, 1664 (2014).ADSCrossRefGoogle Scholar
  2. 2.
    V. A. Milichko, A. S. Shalin, I. S. Mukhin, A. E. Kovrov, A. A. Krasilin, A. V. Vinogradov, P. A. Belov, and K. R. Simovski, Phys. Usp. 59, 727 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Afanasev, E. I. Terukov, and A. A. Sherchenkov, Thin-Film Solar Cells Based on Silicon (SPbGETU LETI, St. Petersburg, 2011) [in Russian].Google Scholar
  4. 4.
    L. S. Lunin, M. L. Lunina, A. S. Pashchenko, D. L. Alfimova, D. A. Arustamyan, and A. E. Kazakova, Tech. Phys. Lett. 45, 250 (2019).ADSCrossRefGoogle Scholar
  5. 5.
    E. G. Guk, N. S. Zimogorova, M. Z. Shvarts, V. B. Shuman, and N. A. Tokranova, Tech. Phys. Lett. 21, 61 (1995).ADSGoogle Scholar
  6. 6.
    B. I. Boltaks, Diffusion and Point Defects in Semiconductors (Nauka, Leningrad, 1972) [in Russian].Google Scholar
  7. 7.
    D. König, S. Gutsch, H. Gnaser, M. Wahl, M. Kopnarski, J. Göttlicher, R. Steininger, M. Zacharias, and D. Hiller, Sci. Rep. 5, 9702 (2015). ADSCrossRefGoogle Scholar
  8. 8.
    J. Lindroos, D. P. Fenning, D. J. Backlund, E. Verlage, A. Gorgulla, S. K. Estreicher, H. Savin, and T. Buonassisi, J. Appl. Phys. 113, 204906 (2013).ADSCrossRefGoogle Scholar
  9. 9.
    A. S. Astashchenkov, D. I. Brinkevich, and V. V. Petrov, Dokl. BGUIR, No. 8 (38), 37 (2018).Google Scholar
  10. 10.
    M. K. Bakhadyrkhanov, Kh. M. Iliyev, K. S. Ayupov, B. A. Abdurakhmanov, P. Yu. Krivenko, and R. L. Kholmukhamedov, Inorg. Mater. 47, 962 (2011).CrossRefGoogle Scholar
  11. 11.
    B. A. Abdurakhmanov, M. K. Bakhadirkhanov, K. S. Ayupov, H. M. Iliyev, E. B. Saitov, A. Mavlyanov, and H. U. Kamalov, Nanosci. Nanotechnol. 4 (2), 23 (2014).Google Scholar
  12. 12.
    M. K. Bakhadyrkhanov, K. A. Ismailov, B. K. Ismaylov, and Z. M. Saparniyazova, Semicond. Phys., Quantum Electron. Optoelectron. 21, 300 (2018).Google Scholar
  13. 13.
    M. K. Bakhadyrhanov, U. X. Sodikov, D. Melibayev, T. Wumaier, S. V. Koveshnikov, K. A. Khodjanepesov, and J. Zhan, J. Mater. Sci. Chem. Eng. 6, 180 (2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • M. K. Bakhadyrkhanov
    • 1
    Email author
  • S. B. Isamov
    • 1
  • Z. T. Kenzhaev
    • 2
  • S. V. Koveshnikov
    • 1
  1. 1.Tashkent State Technical UniversityTashkentUzbekistan
  2. 2.Karakalpak State UniversityNukusUzbekistan

Personalised recommendations