Technical Physics Letters

, Volume 45, Issue 5, pp 485–488 | Cite as

A Highly Selective Bandpass Filter Based on Suspended Substrate Resonators with a Two-Sided Stripline Pattern

  • B. A. BelyaevEmail author
  • A. M. Serzhantov
  • Ya. F. Bal’va
  • An. A. Leksikov
  • E. O. Grushevskii


New resonator design employing a hairpin stripline conductor with a stub situated on one side of a dielectric substrate and regular stripline conductors (connected to a screen) on the other side. Eigenfrequencies of the first three oscillation modes of this resonator can be made closer to each other, so that the resonances of two modes are involved in the formation of the passband while the third mode resonance forms a minimum of the transmission coefficient adjacent to the passband. A structure comprising four resonators of this type has the characteristic of an eighth-order bandpass filter arranged in a case with 45 × 16 × 6.25-mm internal dimensions possessing   f0 = 0.52 GHz central frequency with a 14% relative bandwidth. The filter is highly selective due to the attenuation poles being close to the pass band and a wide high-frequency stopband extending above a fivefold   f0  value at a level of  –100 dB.



  1. 1.
    I. C. Hunter, Theory and Design of Microwave Filters, Vol. 48 of IET Electromagnetic Waves Series (Cambridge Univ. Press, Cambridge, 2006).Google Scholar
  2. 2.
    M. A. Morgan, Reflectionless Filters (Artech House Microwave Library, Boston, London, 2017).Google Scholar
  3. 3.
    J.-S. Hong, Microstrip Filters for RF/Microwave Applications (Wiley, Hoboken, 2011).CrossRefGoogle Scholar
  4. 4.
    B. A. Belyaev, A. A. Leksikov, and V. V. Tyurnev, J. Commun. Technol. Electron. 49, 1228 (2004).Google Scholar
  5. 5.
    A. A. Aleksandrovsky, B. A. Belyaev, and A. A. Leksikov, J. Commun. Technol. Electron. 48, 358 (2003).Google Scholar
  6. 6.
    B. A. Belyaev, S. A. Khodenkov, An. A. Leksikov, and V. F. Shabanov, Dokl. Phys. 62, 289 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    X. B. Wei, Y. Shi, P. Wang, J. X. Liao, Z. Q. Xu, and B. C. Yang, J. Electromagn. Waves Appl. 26, 1095 (2012).CrossRefGoogle Scholar
  8. 8.
    J.-T. Kuo and E. Shih, IEEE Trans. Microwave Theory Technol. 51, 1554 (2003).ADSCrossRefGoogle Scholar
  9. 9.
    S.-C. Lin, P.-H. Deng, Y.-S. Lin, C.-H. Wang, and C. H. Chen, IEEE Trans. Microwave Theory Technol. 54, 1011 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    B. A. Belyaev, A. S. Voloshin, A. S. Bulavchuk, and R. G. Galeev, Tech. Phys. Lett. 42, 622 (2016).ADSCrossRefGoogle Scholar
  11. 11.
    D. V. Kholodnyak, V. M. Turgaliev, I. V. Munina, P. A. Tural’chuk, and I. B. Vendik, Radiotekhnika, No. 7, 132 (2012).Google Scholar
  12. 12.
    A. Simin, D. Kholodnyak, and I. Vendik, Kompon. Tekhnol., No. 5, 190 (2005).Google Scholar
  13. 13.
    B. A. Belyaev, A. M. Serzhantov, V. V. Tyurnev, Y. F. Balva, and A. A. Leksikov, Prog. Electromagn. Res. C 48, 37 (2014).CrossRefGoogle Scholar
  14. 14.
    B. A. Belyaev, A. M. Serzhantov, A. A. Leksikov, Y. F. Balva, and A. A. Leksikov, Microwave Opt. Technol. Lett. 59, 2212 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • B. A. Belyaev
    • 1
    • 2
    Email author
  • A. M. Serzhantov
    • 2
  • Ya. F. Bal’va
    • 1
  • An. A. Leksikov
    • 1
  • E. O. Grushevskii
    • 1
  1. 1.Kirensky Institute of Physics, Siberian Branch, Russian Academy of SciencesKrasnoyarskRussia
  2. 2.Siberian Federal UniversityKrasnoyarskRussia

Personalised recommendations