Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 930–933 | Cite as

The Development of Overheat Instabilities in a Metastable Metal

  • V. I. Oreshkin
Article
  • 12 Downloads

Abstract

The development of thermal (overheat) instabilities during the electric explosion of a conducting wire has been analyzed using the theory of small perturbations. At the initial stage of electric explosion (upon melting of the metal), the substance can occur in three phases: liquid, two-phase state (liquid + vapor), and metastable metal liquid (overheated liquid). Comparative analysis of the growth of overheat instabilities is performed as dependent on the phase in which the metal can occur. It is shown that, from the standpoint of development of overheat instability, the most unstable phase is the overheated metastable liquid.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Burtsev, N. V. Kalinin, and A. V. Luchinskii, Electric Explosion of Conductors and Its Application in Electrophysical Devices (Energoizdat, Moscow, 1990) [in Russian].Google Scholar
  2. 2.
    G. A. Mesyats, Pulsed Energetics and Electronics (Nauka, Moscow, 2004) [in Russian].Google Scholar
  3. 3.
    M. I. Lerner, E. A. Glazkova, A. S. Lozhkomoev, N. V. Svarovskaya, O. V. Bakina, A. V. Pervikov, and S. G. Psakhie, Powder Technol. 295, 307 (2016).CrossRefGoogle Scholar
  4. 4.
    S. I. Krivosheev, V. V. Titkov, and G. A. Shneerson, Tech. Phys. 42, 352 (1997).CrossRefGoogle Scholar
  5. 5.
    A. L. Surkaev, Tech. Phys. 60, 981 (2015).CrossRefGoogle Scholar
  6. 6.
    T. J. Awe, K. J. Peterson, E. P. Yu, R. D. McBride, D. B. Sinars, M. R. Gomez, C. A. Jennings, M. R. Martin, S. E. Rosenthal, D. G. Schroen, A. B. Sefkow, S. A. Slutz, K. Tomlinson, and R. A. Vesey, Phys. Rev. Lett. 116, 065001 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Aleksandrov, V. A. Gasilov, E. V. Grabovskii, A. N. Gritsuk, Ya. N. Laukhin, K. N. Mitrofanov, G. M. Oleinik, O. G. Ol’khovskaya, P. V. Sasorov, V. P. Smirnov, I. N. Frolov, and A. P. Shevel’ko, Plasma Phys. Rep. 40, 939 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    Exploding Wires, Ed. by W. G. Chace and H. K. Moor (Plenum, New York, 1959–1968), Vols. 1–4.Google Scholar
  9. 9.
    V. I. Oreshkin, A. S. Zhigalin, A. G. Rousskikh, and V. V. Kuznetsov, J. Eng. Thermophys. 22, 288 (2013).CrossRefGoogle Scholar
  10. 10.
    D. B. Sinars, T. A. Shelkovenko, S. A. Pikuz, V. M. Romanova, K. M. Chandler, J. B. Greenly, D. A. Hammer, and B. R. Kusse, Phys. Plasmas 7, 429 (2000).ADSCrossRefGoogle Scholar
  11. 11.
    G. S. Sarkisov, K. W. Struve, and D. H. McDaniel, Phys. Plasmas 11, 4573 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    V. O. Bel’ko and O. A. Emel’yanov, Tech. Phys. Lett. 35, 861 (2009).CrossRefGoogle Scholar
  13. 13.
    E. Kaselouris, V. Dimitriou, I. Fitilis, A. Skoulakis, G. Koundourakis, E. L. Clark, M. Bakarezos, I. K. Nikolos, N. A. Papadogiannis, and M. Tatarakis, Nat. Commun. 8, 1713 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    R. B. Baksht, A. G. Rousskikh, A. S. Zhigalin, V. I. Oreshkin, and A. P. Artyomov, Phys. Plasmas 22, 103521 (2015).ADSCrossRefGoogle Scholar
  15. 15.
    T. J. Awe, E. P. Yu, K. C. Yates, W. G. Yelton, B. S. Bauer, T. M. Hutchinson, S. Fuelling, and B. B. Mckenzie, IEEE Trans. Plasma Sci. 45, 584 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    K. B. Abramova, N. A. Zlatin, and B. P. Peregud, Sov. Phys. JETP 42, 1019 (1975).ADSGoogle Scholar
  17. 17.
    A. A. Valuev, I. Ya. Dikhter, and V. A. Zeigarnik, Zh. Tekh. Fiz. 48, 2088 (1978).Google Scholar
  18. 18.
    V. I. Oreshkin, Tech. Phys. Lett. 35, 36 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    A. G. Rousskikh, V. I. Oreshkin, S. A. Chaikovsky, N. A. Labetskaya, A. V. Shishlov, I. I. Beilis, and R. B. Baksht, Phys. Plasmas 15, 102706 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    V. I. Oreshkin, Phys. Plasmas 15, 092103 (2008).ADSCrossRefGoogle Scholar
  21. 21.
    V. I. Oreshkin, A. S. Zhigalin, A. G. Russkikh, S. A. Chaikovskii, and R. B. Baksht, Russ. Phys. J. 60, 1400 (2017).CrossRefGoogle Scholar
  22. 22.
    V. E. Fortov, K. V. Khishchenko, P. R. Levashov, and I. V. Lomonosov, Nucl. Instrum. Methods Phys. Res., Sect. A 415, 604 (1998).ADSCrossRefGoogle Scholar
  23. 23.
    M. P. Desjarlais, Contrib. Plasma Phys. 41, 267 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations