Technical Physics Letters

, Volume 44, Issue 10, pp 912–915 | Cite as

The Influence of the Structure of a Magnesium–Aluminum Nitride Metal-Matrix Composite on the Resistance to Deformation under Quasi-Static and Dynamic Loading

  • A. P. KhrustalyovEmail author
  • G. V. Garkushin
  • I. A. Zhukov
  • S. V. Razorenov


The microstructure of an ML5 commercial magnesium alloy reinforced by aluminum nitride (AlN) nanoparticles with an average size of 80 nm at an amount of 0.5 wt % has been studied. Comparative data on strength and plasticity of the initial ML15 alloy and AlN-reinforced metal-matrix composite were obtained using Instron 3369 universal testing machine. The influence of material microstructure on the resistance of samples to high-rate deformation and fracture was determined by analysis of the full wave profiles measured using a VISAR laser Doppler velocimeter.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Jayalakshmi and M. Gupta, Metallic Amorphous Alloy Reinforcements in Light Metal Matrices, Springer Briefs in Materials (Springer Int. Publ., New York, 2015).Google Scholar
  2. 2.
    J. B. Ferguson, F. Sheykh-Jaberi, C. S. Kim, P. K. Rohatgi, and K. Cho, Mater. Sci. Eng., A 558, 193 (2012).CrossRefGoogle Scholar
  3. 3.
    M. Wang, L. Lu, C. Li, X. H. Xiao, X. M. Zhou, J. Zhu, and S. N. Luo, Mater. Sci. Eng., A 661, 126 (2016).CrossRefGoogle Scholar
  4. 4.
    H. Asgari, A. Szpunar, and A. G. Odeshi, Mater. Des. 61, 26 (2014).CrossRefGoogle Scholar
  5. 5.
    I. A. Zhukov, G. V. Garkushin, S. A. Vorozhtsov, A. P. Khrustalev, S. V. Razorenov, A. B. Vorozhtsov, V. V. Promakhov, and A. S. Zhukov, Russ. Phys. J. 58, 1358 (2015).CrossRefGoogle Scholar
  6. 6.
    S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].Google Scholar
  7. 7.
    M. Lerner, A. Vorozhtsov, S. Guseinov, and P. Storozhenko, Metal Nanopowders: Production Characterization, and Energetic Applications, Ed. by A. A. Gromov and U. Teipel (Wiley-VCH, Weinheim, 2014), p. 79.Google Scholar
  8. 8.
    A. P. Khrustalev, S. A. Vorozhtsov, I. A. Zhukov, V. V. Promakhov, V. Kh. Dammer, and A. B. Vorozhtsov, Russ. Phys. J. 59, 2183 (2016).CrossRefGoogle Scholar
  9. 9.
    A. B. Vorozhtsov, V. A. Arkhipov, E. R. Shrager, V. Kh. Dammer, S. A. Vorozhtsov, and M. G. Khmeleva, RF Patent No. 2625471, Byull. Izobret. No. 20 (2017).Google Scholar
  10. 10.
    S. Vorozhtsov, L. Minkov, V. Dammer, A. Khrustalyov, I. Zhukov, V. Promakhov, A. Vorozhtsov, and M. Khmeleva, JOM 69, 2653 (2017).ADSCrossRefGoogle Scholar
  11. 11.
    L. M. Barker and R. E. Hollenbach, J. Appl. Phys. 43, 4669 (1972).ADSCrossRefGoogle Scholar
  12. 12.
    G. I. Kanel, G. V. Garkushin, A. S. Savinykh, S. V. Razorenov, T. de Resseguier, W. G. Proud, and M. R. Tyutin, J. Appl. Phys. 116, 143504 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    G. I. Kanel, S. V. Razorenov, A. A. Bogatch, A. V. Utkin, V. E. Fortov, and D. E. Grady, J. Appl. Phys. 79, 8310 (1996).ADSCrossRefGoogle Scholar
  14. 14.
    G. I. Kanel’, S. V. Razorenov, and V. E. Fortov, Sov. Phys. Dokl. 29, 241 (1984).ADSGoogle Scholar
  15. 15.
    G. V. Garkushin, G. I. Kanel’, and S. V. Razorenov, Phys. Solid State 54, 1079 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. P. Khrustalyov
    • 1
    Email author
  • G. V. Garkushin
    • 1
    • 2
  • I. A. Zhukov
    • 1
  • S. V. Razorenov
    • 1
    • 2
  1. 1.Tomsk State UniversityTomskRussia
  2. 2.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations