Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 909–911 | Cite as

Measuring the Amount of Substance Evaporated from the Surface of a Viscous Dielectric Liquid during Nanosecond Barrier Discharge

  • N. G. Danchenko
  • A. E. DubinovEmail author
  • J. P. Kozhayeva
Article
  • 9 Downloads

Abstract

The amount of substance evaporated from the surface of a viscous dielectric liquid during nanosecond barrier discharge has been measured for the first time using a method based on the creation of a gas microbubble in the volume of liquid and subsequent generation of discharge in the bubble. By measuring increase in the bubble radius during discharge, it is possible to determine the amount of substance evaporated from the microbubble walls. It is established that millijoule energy deposition in discharge leads to the evaporation of several nanomoles of substance, and this amount grows with the deposited electric energy.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. G. Samoilovich, V. I. Gibalov, and K. V. Kozlov, Physics Chemistry of a Barrier Discharge (Mosk. Gos. Univ., Moscow, 1989) [in Russian].Google Scholar
  2. 2.
    U. Kogelschatz, Plasma Chem. Plasma Process. 23, 1 (2003).CrossRefGoogle Scholar
  3. 3.
    S. V. Avtaeva, Barrier Discharge. Study and Application (Kyrg.-Ross. Slav. Univ., Bishkek, 2009) [in Russian].Google Scholar
  4. 4.
    T. Szczęsna and H. Rybak-Chmielewska, J. Apicult. Sci. 48, 97 (2004).Google Scholar
  5. 5.
    A. Kayacier and S. Karaman,J. Texture Studies 39, 17 (2008).CrossRefGoogle Scholar
  6. 6.
    S. Saxena, S. Gautam, and A. Sharma, Food Chem. 118, 391 (2010).CrossRefGoogle Scholar
  7. 7.
    N. L. A-Rahaman, L. S. Chua, M. R. Sarmidi, and R. Aziz, Agricult. Sci. 4 (5B), 46 (2014).Google Scholar
  8. 8.
    M. Oroian, J. Food Eng. 119, 167 (2013).CrossRefGoogle Scholar
  9. 9.
    Medovaya Dolina. http://www.medovayadolina.com/Google Scholar
  10. 10.
    A. E. Dubinov, J. P. Kozhayeva, I. L. L’vov, S. A. Sadovoy, V. D. Selemir, and D. V. Vyalykh, Cryst. Growth Des. 15, 4975 (2015).CrossRefGoogle Scholar
  11. 11.
    A. E. Dubinov, J. P. Kozhayeva, and N. G. Danchenko, IEEE Trans. Plasma Sci. 46, 2930 (2018).ADSCrossRefGoogle Scholar
  12. 12.
    S. Gershman, O. Mozgina, A. Belkind, K. Becker, and E. Kunhardt, Contrib. Plasma Phys. 47, 19 (2007).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • N. G. Danchenko
    • 1
  • A. E. Dubinov
    • 1
    • 2
    • 3
    Email author
  • J. P. Kozhayeva
    • 1
    • 2
    • 3
  1. 1.All-Russia Research Institute of Experimental PhysicsRussian Federal Nuclear CenterSarov, Nizhny Novgorod oblastRussia
  2. 2.National Research University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  3. 3.Sarov Physicotechnical InstituteNational Research University MEPhISarov, Nizhny Novgorod oblastRussia

Personalised recommendations