Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 942–945 | Cite as

GaAs Schottky Barrier Detectors for Alpha-Particle Spectrometry at Temperatures up to 120°C

  • A. V. Chernykh
  • S. V. Chernykh
  • S. I. Didenko
  • N. Burtebaev
  • Maulen Nasurlla
  • Marzhan Nasurlla
  • G. I. Britvich
  • A. P. Chubenko
  • F. M. Baryshnikov
  • E. V. Sleptsov
Article
  • 9 Downloads

Abstract

GaAs Schottky barrier detectors for α particle spectrometry have been tested. Detectors had an input window area of 80 mm2 and a working barrier layer thickness of 40–50 μm. The energy resolution (FWHM) measured on 5.499 MeV α line of 238Pu source amounted to 17.5 keV at a generator peak width of 7.8 keV. In the measurements on a 226Ra source, detectors showed linear response and nearly 100% charge collection efficiency at reverse bias above 65 V for all energies of α particles emitted from the source. Tests for thermal stability showed that the proposed detectors can be used in alpha-spectrometry of radionuclides at temperatures up to 120°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Hartmann, Springer Tracts Mod. Phys. 275, 1 (2017).CrossRefGoogle Scholar
  2. 2.
    J. Wang, P. Mulligan, L. Brillson, and L. R. Cao, Appl. Phys. Rev. 2, 031102 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    Q. Xu, P. Mulligan, J. Wang, W. Chuirazzi, and L. Cao, Nucl. Instrum. Methods Phys. Res., Sect. A 849, 11 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    M. Pomorski, E. Berdermann, A. Caragheorgheopol, M. Ciobanu, M. Kiš, A. Martemiyanov, C. Nebel, and P. Moritz, Phys. Status Solidi A 203, 3152 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    J. A. Dueñas, J. de la Torre Pérez, A. M. Sänchez, and I. Martel, Appl. Rad. Isotop. 90, 177 (2014).CrossRefGoogle Scholar
  6. 6.
    S. K. Chaudhuri, K. J. Zavalla, and K. C. Mandal, Nucl. Instrum. Methods Phys. Res., Sect. A 728, 97 (2013).ADSCrossRefGoogle Scholar
  7. 7.
    B. Zat’ko, F. Dubecký, A. Šágatová, K. Sedlačová, and L. Ryć, J. Instrum. 10, C04009 (2015).Google Scholar
  8. 8.
    S. V. Chernykh, A. V. Chernykh, S. I. Didenko, F. M. Baryshnikov, N. Burtebayev, G. I. Britvich, A. P. Chubenko, V. G. Guly, Yu. N. Glybin, T. K. Zholdybayev, J. T. Burtebayeva, and M. Nassurlla, Nucl. Instrum. Methods Phys. Res., Sect. A 845, 52 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    A. V. Chernykh, S. V. Chernykh, F. M. Baryshnikov, S.I. Didenko, N. Burtebayev, G. I. Britvich, M. Yu. Kostin, A. P. Chubenko, Marzhan Nassurlla, and Maulen Nassurlla, J. Instrum. 11, C12005 (2016).Google Scholar
  10. 10.
    S. Ramo, Proc. of the IRE 27, 584 (1939).CrossRefGoogle Scholar
  11. 11.
    V. A. Bespalov, A. V. Vorontsov, A. A. Gorbatsevich, V. I. Egorkin, G. P. Zhigal’skii, E. A. Il’ichev, A. V. Kulakov, B. G. Nalbandov, V. S. Pantuev, V. N. Rasputnyi, Yu. N. Sveshnikov, and S. S. Shmelev, Tech. Phys. 49, 310 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Chernykh
    • 1
  • S. V. Chernykh
    • 1
  • S. I. Didenko
    • 1
  • N. Burtebaev
    • 2
  • Maulen Nasurlla
    • 2
    • 3
  • Marzhan Nasurlla
    • 2
    • 3
  • G. I. Britvich
    • 4
  • A. P. Chubenko
    • 5
  • F. M. Baryshnikov
    • 1
  • E. V. Sleptsov
    • 1
  1. 1.National University of Science and Technology MISiS (Moscow Institute of Steel and Alloys)MoscowRussia
  2. 2.Institute of Nuclear PhysicsMinistry of Energy of the Republic of KazakhstanAlmatyKazakhstan
  3. 3.Al-Farabi Kazakh National UniversityAlmatyKazakhstan
  4. 4.A.A. Logunov Institute for High Energy PhysicsNational Research Center Kurchatov InstituteProtvino, Moscow oblastRussia
  5. 5.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations