Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 890–893 | Cite as

Hopping Conductivity in Poly(p-Xylylene)–Fe Nanocomposites

  • A. Yu. VdovichenkoEmail author
  • L. N. Oveshnikov
  • A. S. Orekhov
  • S. A. Zav’yalov
  • B. A. Aronzon
  • S. N. Chvalun
Article
  • 9 Downloads

Abstract

The structure and conductivity of hybrid nanocomposite poly(p-xylylene) films containing iron nanoparticles are studied. The films are obtained by the method of polymerization on a surface from the gas phase, and the concentration of the filler is 4 and 11 vol %. According to the analysis of microphotographs of nanostructures obtained by transmission electron microscopy, the particles are distributed evenly (with a size in the nanometer range and a rather narrow distribution). Studies of the frequency dependence of conductivity show that the transport of the charge carriers is realized by the hopping mechanism with a jump length of ~3.5 nm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. I. Grigoriev, S. A. Zavyalov, and S. N. Chvalun, Polym. Sci., Ser. A 45, 1308 (2003).Google Scholar
  2. 2.
    A. Yu. Khnykov, S. A. Zav’yalov, E. I. Grigor’ev, A. M. Lotonov, P. S. Vorontsov, and S. N. Chvalun, Tech. Phys. Lett. 39, 894 (2013).ADSCrossRefGoogle Scholar
  3. 3.
    G. N. Gerasimov, V. A. Sochilin, S. N. Chvalun, L. V. Volkova, and I. Ye. Kardash, Macromol. Chem. Phys. 197, 1387 (1996).CrossRefGoogle Scholar
  4. 4.
    E. Z. Meilikhov, Phys. Solid State 43, 1225 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    T. E. Nowlin, D. F. Smith, and G. S. Cieloszyk, J. Polym. Sci., Polym. Chem. Ed. 18, 2103 (1980).ADSCrossRefGoogle Scholar
  6. 6.
    R. M. Cornell and U. Schwertmann, The Iron Oxides (Wiley-VCH, Weinheim, 2003).CrossRefGoogle Scholar
  7. 7.
    Charge Transport in Disordered Solids with Applications in Electronics, Ed. by S. Baranovski (Wiley, Chichester, 2006).Google Scholar
  8. 8.
    S. Choudhary, Ind. J. Chem. Technol. 24, 311 (2017).Google Scholar
  9. 9.
    A. N. Papathanassiou, I. Sakellis, and J. Grammatikakis, Appl. Phys. Lett. 91, 122911 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1994).ADSCrossRefGoogle Scholar
  11. 11.
    C. S. Garoufalisa, P. Poulopoulos, N. Bouropoulos, A. Barnasas, and S. Baskoutas, Phys. E (Amsterdam, Neth.) 89, 67 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. Yu. Vdovichenko
    • 1
    • 2
    Email author
  • L. N. Oveshnikov
    • 1
    • 3
  • A. S. Orekhov
    • 1
    • 4
  • S. A. Zav’yalov
    • 1
  • B. A. Aronzon
    • 1
    • 3
  • S. N. Chvalun
    • 1
    • 2
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Enikopolov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussia
  3. 3.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  4. 4.Shubnikov Institute of CrystallographyFederal Research Center of Crystallography and PhotonicsMoscowRussia

Personalised recommendations