Technical Physics Letters

, Volume 44, Issue 10, pp 869–872 | Cite as

Dependences of the Thermophysical Parameters of Activated Thermal-Emission Cathodes on the Current in a Stable Arc Discharge

  • B. D. Tsydypov
  • I. G. Simakov
  • S. B. BazarovaEmail author


The influence of electrical current (in the range 20–150 A) on the thermophysical characteristics of activated thermal cathodes (W + 2% ThO2) in a freely glowing low-pressure argon arc is investigated. For the first time, the dependences of key cathode parameters, such as the heat flux at the electrode, the voltage equivalent of the heat, the specific erosion, and the distributions of the temperature and work function over the extension length of the cathode from the holder, are obtained. A nonmonotonic dependence of the specific erosion on the electrical current with a minimal level at 50–60 A is noted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. Fauchais and A. Vardelle, IEEE Trans. Plasma Sci. 25, 1258 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Budin, M. E. Pinchuk, V. E. Kuznetsov, and F. G. Rutberg, Tech. Phys. Lett. 40, 1061 (2014).ADSCrossRefGoogle Scholar
  3. 3.
    V. F. Gordeev and A. V. Pustogarov, Thermoemission Arc Cathodes (Energoatomizdat, Moscow, 1988) [in Russian].Google Scholar
  4. 4.
    M. F. Zhukov, I. M. Zasypkin, A. N. Timoshevskii, B. I. Mikhailov, and G. A. Desyatkov, Electric Arc Generators of Thermal Plasma (Nauka, Novosibirsk, 1999) [in Russian].Google Scholar
  5. 5.
    V. Nemchinsky, IEEE Trans. Plasma Sci. 42, 199 (2014).ADSCrossRefGoogle Scholar
  6. 6.
    M. F. Zhukov, N. P. Kozlov, L. V. Pustogarov, A. S. Anypakov, V. I. Khvesyuk, G. A. Dyuzhev, and G.-N. Dandaron, Near-Electrode Processes in Arc Discharges (Nauka, Novosibirsk, 1982) [in Russian].Google Scholar
  7. 7.
    X. Zhou and J. Heberlein, J. Phys. D: Appl. Phys. 31, 2577 (1998).ADSCrossRefGoogle Scholar
  8. 8.
    B. D. Tsydypov, Tech. Phys. Lett. 36, 679 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    B. D. Tsydypov, Tech. Phys. Lett. 41, 1002 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    E. M. Savitskii, I. V. Burov, V. A. Korol’kov, E. V. Ivanyushenko, L. N. Litvak, and V. A. Kuznetsov, Fiz. Khim. Obrab. Mater., No. 2, 121 (1985).Google Scholar
  11. 11.
    E. Casado, V. Colomer, E. Muñoz-Serrano, and R. Sicilia, J. Phys. D: Appl. Phys. 35, 992 (2002).ADSCrossRefGoogle Scholar
  12. 12.
    B. D. Tsydypov, Tech. Phys. 52, 528 (2007).CrossRefGoogle Scholar
  13. 13.
    M. F. Zhukov, N. P. Kozlov, V. V. Guzhkov, V. I. Khvesyuk, and B. D. Tsydypov, Sov. Phys. Dokl. 26, 997 (1981).ADSGoogle Scholar
  14. 14.
    D. Ortega, J. A. Sullero Marin, E. Muñoz-Serrano, and E. Casado, J. Phys. D: Appl. Phys. 42, 085202 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    J. A. Sullero, D. Ortega, E. Muñoz-Serrano, and E. Casado, J. Phys. D: Appl. Phys. 43, 185204 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    B. D. Tsydypov and I. G. Simakov, Tech. Phys. 55, 1661 (2010).CrossRefGoogle Scholar
  17. 17.
    B. D. Tsydypov, High Temp. 52, 580 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • B. D. Tsydypov
    • 1
  • I. G. Simakov
    • 1
  • S. B. Bazarova
    • 1
    Email author
  1. 1.Institute of Physical Materials Science, Siberian BranchRussian Academy of SciencesUlan-Ude, BuryatiaRussia

Personalised recommendations