Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 894–897 | Cite as

A Diagnostic Technique for Generalized Synchronization in Systems with a Complex Chaotic Attractor Topology

  • O. I. MoskalenkoEmail author
  • V. A. Khanadeev
  • A. A. Koronovskii
Article
  • 10 Downloads

Abstract

A diagnostic technique is proposed for the mode of generalized synchronization in systems with a complex chaotic attractor topology based on consideration of tubes of trajectories in the phase space of interacting systems. The method functionality is tested by the numerical simulation of two mutually coupled modified Lorentz systems: one in the chaotic state, and another in the hyperchaotic state. The results are compared to the data obtained by calculating the Lyapunov exponent spectrum and show good agreement.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. F. Rulkov, M. M. Sushchik, L. S. Tsimring, and H. D. I. Abarbanel, Phys. Rev. E 51, 980 (1995).ADSCrossRefGoogle Scholar
  2. 2.
    A. V. Starodubov, A. A. Koronovski, A. E. Hramov, Yu. D. Zharkov, and B. S. Dmitriev, Tech. Phys. Lett. 33, 612 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, Phys. Rev. E 84, 037201 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    O. I. Moskalenko, A. A. Koronovskii, A. E. Hramov, and S. Boccaletti, Phys. Rev. E 86, 036216 (2012).ADSCrossRefGoogle Scholar
  5. 5.
    A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, Tech. Phys. Lett. 38, 924 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    J. R. Terry and G. D. van Wiggeren, Chaos, Solitons Fractals 12, 145 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    A. A. Koronovskii, O. I. Moskalenko, and A. E. Khramov, Phys. Usp. 52, 1213 (2009).ADSCrossRefGoogle Scholar
  8. 8.
    M. D. Prokhorov, V. I. Ponomarenko, D. D. Kulminskiy, A. A. Koronovskii, O. I. Moskalenko, and A. E. Hramov, Nonlin. Dyn. 87, 2039 (2017).CrossRefGoogle Scholar
  9. 9.
    H. D. I. Abarbanel, N. F. Rulkov, and M. M. Sushchik, Phys. Rev. E 53, 4528 (1996).ADSCrossRefGoogle Scholar
  10. 10.
    K. Pyragas, Phys. Rev. E 56, 5183 (1997).ADSCrossRefGoogle Scholar
  11. 11.
    O. I. Moskalenko, A. A. Koronovskii, and A. E. Hramov, Phys. Rev. E 87, 064901 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Uchida, R. McAllister, R. Meucci, and R. Roy, Phys. Rev. Lett. 91, 174101 (2003).ADSCrossRefGoogle Scholar
  13. 13.
    A. A. Koronovskii, O. I. Moskalenko, V. A. Maksimenko, and A. E. Hramov, Tech. Phys. Lett. 37, 610 (2011).CrossRefGoogle Scholar
  14. 14.
    A. Wolf, J. Swift, H. L. Swinney, and J. Vastano, Phys. D (Amsterdam, Neth.) 16, 285 (1985).ADSCrossRefGoogle Scholar
  15. 15.
    E. N. Lorentz, J. Atmos. Sci. 20, 130 (1963).ADSCrossRefGoogle Scholar
  16. 16.
    L. O. Chua, M. Komuro, and T. Matsumoto, IEEE Trans. Circuits Syst. 33, 1073 (1986).ADSGoogle Scholar
  17. 17.
    B. C. Anishchenko and A. B. Neiman, Sov. Tech. Phys. Lett. 17, 510 (1991).Google Scholar
  18. 18.
    C. A. Zengqiang, Y. Yong, Q. Guoyuan, and Y. Zhuzhi, Phys. Lett. A 360, 696 (2007).MathSciNetCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. I. Moskalenko
    • 1
    Email author
  • V. A. Khanadeev
    • 1
  • A. A. Koronovskii
    • 1
  1. 1.Saratov State UniversitySaratovRussia

Personalised recommendations