Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 865–868 | Cite as

The Gas-Phase Synthesis of a New Functional Hybrid Material on the Basis of Multiwalled Carbon Nanotubes Decorated with Faceted Aluminum Nanocrystals

  • K. V. KremlevEmail author
  • A. M. Ob”edkov
  • N. M. Semenov
  • B. S. Kaverin
  • S. Yu. Ketkov
  • S. A. Gusev
  • P. A. Yunin
  • A. I. Elkin
  • A. V. Aborkin
Article
  • 12 Downloads

Abstract

The deposition of polyhedral aluminum nanocrystals onto the surface of multiwalled carbon nanotubes (MWCNTs) via metalorganic chemical vapor deposition with the use of triisobutylaluminum as the precursor has been performed for the first time. The new hybrid nanomaterial (Al/MWCNTs) has been characterized by X-ray phase analysis, scanning electron microscopy, and high-resolution transmission electron microscopy. The obtained Al/MWCNTs hybrid materials were tested as the filler for the creation of threedimensional composites on the basis of an AMg2 alloy via powder metallurgy. It has been shown that the use of Al/MWCNTs as the filler increases the hardness of the composites by 18% in comparison with the initial MWCNTs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Paskevicius, J. Webb, M. P. Pitt, T. P. Blach, B. C. Hauback, A. Mac, E. Gray, and C. E. Buckley, J. Alloys Compd. 481, 595 (2009).CrossRefGoogle Scholar
  2. 2.
    A. Baladi and R. S. Mamoory, Appl. Surf. Sci. 256, 7599 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    H. R. Ghorbani, Orient. J. Chem. 30, 1941 (2014).CrossRefGoogle Scholar
  4. 4.
    D. A. Kaplowitz, R. J. Jouet, and M. R. Zacharian, J. Cryst. Growth 312, 3625 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    V. Amendola and M. Meneghetti, Phys. Chem. Chem. Phys. 15, 3027 (2013).CrossRefGoogle Scholar
  6. 6.
    M. F. L. de Volder, S. H. Tawfick, R. H. Baughman, and A. J. Hart, Science (Washington, DC, U. S.) 339 (6119), 535 (2013).CrossRefGoogle Scholar
  7. 7.
    A. M. Obiedkov, B. S. Kaverin, V. A. Egorov, N. M. Semenov, S. Yu. Ketkov, G. A. Domrachev, K. V. Kremlev, S. A. Gusev, V. N. Perevezentsev, A. N. Moskvichev, A. A. Moskvichev, and A. S. Rodionov, Pis’ma Mater. 2 (3), 152 (2012).Google Scholar
  8. 8.
    RF Patent No. 2618278 (2017); Ref. Byull. Nauch. Tekh. Patent. Inform. Ugler. Mater., No. 10, 28 (2017).Google Scholar
  9. 9.
    A. V. Aborkin, M. I. Alymov, A. V. Kireev, A. I. Elkin, and A. V. Sobol’kov, Ros. Nanotekhnol. 12 (7–8), 66 (2017).Google Scholar
  10. 10.
    A. V. Aborkin, A. V. Sobol’kov, A. V. Kireev, A. T. Volochko, A. Yu. Izobello, N. V. Sachkova, and A. E. Sytscev, J. Phys: Conf. Ser. 951, 012008 (2018).Google Scholar
  11. 11.
    M. Furukawa, Z. Horita, M. Nemoto, R. Z. Valiev, and T. G. Langdon, Acta Mater. 44, 4619 (1996).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Kremlev
    • 1
    Email author
  • A. M. Ob”edkov
    • 1
  • N. M. Semenov
    • 1
  • B. S. Kaverin
    • 1
  • S. Yu. Ketkov
    • 1
  • S. A. Gusev
    • 2
  • P. A. Yunin
    • 2
  • A. I. Elkin
    • 3
  • A. V. Aborkin
    • 3
  1. 1.Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhny NovgorodRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesAfonino, Nizhny Novgorod oblastRussia
  3. 3.Stoletovy State UniversityVladimirRussia

Personalised recommendations