Advertisement

Technical Physics Letters

, Volume 44, Issue 10, pp 877–880 | Cite as

Optical Properties of InGaAs/InAlAs Metamorphic Nanoheterostructures for Photovoltaic Converters of Laser and Solar Radiation

  • V. M. Emel’yanovEmail author
  • N. A. Kalyuzhnyy
  • S. A. Mintairov
  • M. Z. Shvarts
Article
  • 9 Downloads

Abstract

Reflectance spectroscopy has been used to determine the refractive indices of nanoscale InxAlyGa1–xyAs and InxAl1–xAs layers with indium and aluminum concentrations x = 0.21–0.24 and y = 0, 0.1, and 0.2 on specially created Bragg-reflector heterostructures at wavelengths in the range 700–2000 nm. It was demonstrated that the method based on an analysis of the auto- and cross-correlation coefficients of the wavelength derivatives of the dependence of the reflectance of structures of this kind in order to determine the dispersion curves of the materials forming a reflector. It was found that raising the concentration of indium in InGaAs and AlInAs leads to a substantial rise in the refractive index, with a preserved spectral run of the refractive indices, which is characteristic of gallium arsenide and aluminum arsenide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. V. Rybalchenko, S. A. Mintairov, R. A. Salii, N. Kh. Timoshina, M. Z. Shvarts, and N. A. Kalyuzhnyy, Semiconductors 51, 93 (2017).ADSCrossRefGoogle Scholar
  2. 2.
    S. A. Mintairov, V. M. Emel’yanov, D. V. Rybalchenko, R. A. Salii, N. Kh. Timoshina, M. Z. Shvarts, and N. A. Kalyuzhnyy, Semiconductors 50, 517 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    N. A. Kalyuzhnyy, S. A. Mintairov, A. M. Nadtochiy, V. M. Nevedomskiy, D. V. Rybalchenko, and M. Z. Shvarts, Electron. Lett. 53, 173 (2017).CrossRefGoogle Scholar
  4. 4.
    M. Dumke, G. Heiserich, S. Franke, L. Schulz, and L. Overmeyer, J. Syst., Cybernet. Inform. 8, 55 (2010).Google Scholar
  5. 5.
    V. M. Lantratov, I. V. Kochnev, and M. Z. Shvarts, in Proceedings of the 27th State of the Art Program on Compound Semiconductors Conference SOTAPOCS (Electrochem. Soc., 1997), Vol. 97–21, p. 125.Google Scholar
  6. 6.
    M. Z. Shvarts, O. I. Chosta, I. V. Kochnev, V. M. Lantratov, and V. M. Andreev, Sol. Energy Mater. Sol. Cells 68 (1), 105 (2001).CrossRefGoogle Scholar
  7. 7.
    V. M. Emelyanov, N. A. Kalyuzhniy, S. A. Mintairov, M. Z. Shvarts, and V. M. Lantratov, Semiconductors 44, 1600 (2010).ADSCrossRefGoogle Scholar
  8. 8.
    F. Abeles, Ann. Phys. 5, 596 (1950).MathSciNetCrossRefGoogle Scholar
  9. 9.
    S. Adachi, J. Appl. Phys. 66, 6030 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    D. E. Aspnes, S. M. Kelso, R. A. Logan, and R. Bhat, J. Appl. Phys. 60, 754 (1986).ADSCrossRefGoogle Scholar
  11. 11.
    A. N. Pikhtin and A. D. Yas’kov, Sov. Phys. Semicond. 14, 229 (1980).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Emel’yanov
    • 1
    Email author
  • N. A. Kalyuzhnyy
    • 1
  • S. A. Mintairov
    • 1
  • M. Z. Shvarts
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations