Advertisement

Technical Physics Letters

, Volume 44, Issue 9, pp 841–843 | Cite as

Spatial Distribution of Gas Temperature in an Air Plasma Jet of Direct Current Glow Microdischarge

  • O. M. Stepanova
  • A. V. Kazak
  • A. M. Astafiev
  • M. E. Pinchuk
  • L. V. Simonchik
Article

Abstract

The spatial distribution of gas temperature in air plasma jet of dc glow microdischarge has been determined. The temperature field was measured by a thermocouple probe and compared to schlieren images. The jet can be separated in the radial direction into three characteristic regions with clearly pronounced boundaries. The central region represents a narrow hot zone corresponding to the visible plasma plume, in which the gas temperature varies from 50 to 200°C depending on the air flow rate and distance from the anode. This zone is surrounded by a warm “coat” of ~1-cm diameter and a temperature within 30–50°C. The outer region represented ambient air at room temperature. The zone of temperatures above 50°C did not extend to a distance above 3 cm from the output nozzle of the discharge cell.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. B. Graves, Phys. Plasmas 21, 080901 (2014). doi 10.1063/1.4892534ADSCrossRefGoogle Scholar
  2. 2.
    X. Lu, M. Laroussi, and V. Puech, Plasma Sources Sci. Technol. 21, 034005 (2012). doi 10.1088/0963-0252/21/3/034005ADSCrossRefGoogle Scholar
  3. 3.
    A. Fridman and G. Friedman, Plasma Medicine (Wiley, Chichester, 2013).Google Scholar
  4. 4.
    R. O. Kolomiiets, Plasma Med. 7, 1 (2017). doi 10.1615/PlasmaMed.2016017358CrossRefGoogle Scholar
  5. 5.
    Z. Chen, G. Xia, Ch. Zou, X. Liu, D. Feng, P. Li, Y. Hu, O. M. Stepanova, and A. A. Kudryavtsev, J. Appl. Phys. 122, 093301 (2017). doi 10.1063/1.5001247ADSCrossRefGoogle Scholar
  6. 6.
    E. A. Sosnin, V. A. Panarin, V. S. Skakun, V. F. Tarasenko, D. S. Pechenitsin, and V. S. Kuznetsov, Tech. Phys. 61, 798 (2016).Google Scholar
  7. 7.
    V. I. Arkhipenko, A. A. Kirillov, A. V. Pavlova, L. V. Simonchik, N. V. Dudchik, M. M. Kuraitsa, and B. M. Obradovich, Izv. NAN Belarusi, Ser. Fiz.-Mat. Nauk, No. 3, 104 (2015).Google Scholar
  8. 8.
    A. Kazak, A. Kirillov, L. Simonchik, O. Nezhvinskaya, and N. Dudchik, Plasma Med. 7, 109 (2017). doi 10.1615/PlasmaMed.2017019263CrossRefGoogle Scholar
  9. 9.
    Physics of Thermal Therapy: Fundamentals and Clinical Applications, Ed. by E. G. Moros (CRC, Taylor, Boca Raton, 2013).Google Scholar
  10. 10.
    V. I. Arkhipenko, A. A. Kirillov, Y. A. Safronau, and L. V. Simonchik, Eur. Phys. J. D 60, 455 (2010). doi 10.1140/epjd/e2010-00266-5ADSCrossRefGoogle Scholar
  11. 11.
    A. S. Baryshnikov, I. V. Basargin, S. V. Bobashev, N. A. Monakhov, P. A. Popov, V. A. Sakharov, and M. V. Chistyakova, Tech. Phys. Lett. 43, 1009 (2017).ADSCrossRefGoogle Scholar
  12. 12.
    A. M. Astafiev, A. A. Kudryavtsev, O. M. Stepanova, and M. E. Pinchuk, in Proceedings of the 42nd IEEE International Conference on Plasma Sciences ICOPS 2015 (IEEE, 2015). doi 10.1109/PLASMA.2015.7285025Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • O. M. Stepanova
    • 1
    • 2
  • A. V. Kazak
    • 3
  • A. M. Astafiev
    • 1
    • 2
  • M. E. Pinchuk
    • 1
    • 2
  • L. V. Simonchik
    • 3
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute for Electrophysics and Electric PowerRussian Academy of SciencesSt. PetersburgRussia
  3. 3.B.I. Stepanov Institute of PhysicsNational Academy of Sciences of BelarusMinskBelarus

Personalised recommendations