Advertisement

Technical Physics Letters

, Volume 44, Issue 9, pp 814–816 | Cite as

Quantum-Cascade Lasers Generating at the 4.8-μm Wavelength at Room Temperature

  • V. V. Mamutin
  • A. P. Vasil’ev
  • A. V. Lyutetskii
  • N. D. Il’inskaya
  • A. A. Usikova
  • Yu. M. Zadiranov
  • N. A. Maleev
  • A. N. Sofronov
  • D. A. Firsov
  • L. E. Vorob’ev
  • V. M. Ustinov
Article

Abstract

We report on room-temperature generation at the 4.8-μm wavelength in a lattice-matched structure of a quantum cascade laser (QCL) grown on indium phosphide (InP) substrate. Laser heterostructures grown by molecular beam epitaxy (MBE) comprised 30 cascades and were designed to generate at the 4.80 μm wavelength corresponding to an atmospheric transparency window. Experiments demonstrated effective lasing at temperatures from 80 to 300 K on a wavelength coinciding with the calculated value, which confirmed the high quality of interfaces, high precision of layer thicknesses, and high accuracy of active region doping.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Razeghi, S. Slivken, Y. Bai, D. Gokden, and S. R. Darvish, New J. Phys. 11, 125017 (2009).ADSCrossRefGoogle Scholar
  2. 2.
    V. V. Mamutin, V. M. Ustinov, J. Boetthcher, and H. Kuenzel, Semiconductors 44, 962 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Yao, A. J. Hoffman, and C. F. Gmachl, Nat. Photon. 6, 432 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Mamutin, N. D. Il’inskaya, B. V. Pushnyi, R. N. Levin, and Yu. M. Shernyakov, Tech. Phys. Lett. 39, 811 (2013).ADSCrossRefGoogle Scholar
  5. 5.
    A. Evans, S. R. Darvish, S. Slivken, and M. Razeghi, Appl. Phys. Lett. 91, 071101 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    M. Chashnikova, G. Monastyrskyi, A. Aleksandrova, M. Klinkmuller, M. P. Semtsiv, and W. T. Masselink, Appl. Phys. Lett. 100, 213504 (2012).ADSCrossRefGoogle Scholar
  7. 7.
    A. Tsekoun, R. Go, R. Pushkarsky, M. Razeghi, C. Kumar, and N. Patel, Proc. Nat. Acad. Sci. U. S. A. 103, 4831 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    R. M. Briggs, C. Frez, C. F. Borgentum, and S. Forouhar, Appl. Phys. Lett. 105, 141117 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    V. V. Mamutin, N. A. Maleev, A. P. Vasilyev, N. D. Ilyinskaya, Yu. M. Zadiranov, A. A. Usikova, M. A. Yagovkina, Yu. M. Shernyakov, and V. M. Ustinov, Semiconductors 52, 126 (2018).ADSCrossRefGoogle Scholar
  10. 10.
    V. V. Mamutin, A. P. Vasilyev, A. V. Lyutetskiy, N. D. Ilyinskaya, Yu. M. Zadiranov, A. N. Sofronov, D. A. Firsov, L. E. Vorobjev, N. A. Maleev, and V. M. Ustinov, Semiconductors 52, 950 (2018).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Mamutin
    • 1
  • A. P. Vasil’ev
    • 1
  • A. V. Lyutetskii
    • 1
  • N. D. Il’inskaya
    • 1
  • A. A. Usikova
    • 1
  • Yu. M. Zadiranov
    • 1
  • N. A. Maleev
    • 1
  • A. N. Sofronov
    • 2
  • D. A. Firsov
    • 2
  • L. E. Vorob’ev
    • 2
  • V. M. Ustinov
    • 1
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussia

Personalised recommendations