Advertisement

Technical Physics Letters

, Volume 44, Issue 7, pp 637–639 | Cite as

Synthesis of Titanium Nanoparticles in Liquid Xenon by a High-Voltage Discharge

  • D. Yu. Akimov
  • V. A. Belov
  • S. V. Bobkov
  • A. I. Bolozdynya
  • P. S. Dzhumaev
  • A. V. Galavanov
  • Yu. V. Gusakov
  • D. E. Kdib
  • A. V. Khromov
  • M. Yu. Kolpakov
  • A. M. Konovalov
  • A. G. Kovalenko
  • E. S. Kozlova
  • A. V. Kumpan
  • A. V. Lukyashin
  • Yu. A. Melikyan
  • O. E. Nepochataya
  • D. G. Rudik
  • M. Yu. Savinov
  • A. V. Shakirov
  • G. E. Simakov
  • V. V. Sosnovtsev
  • A. A. Vasin
  • N. V. Volkov
Article
  • 14 Downloads

Abstract

The formation of titanium nanoparticles (NPs) in a high-voltage electric discharge between titanium electrodes in liquid xenon at a temperature of –105°C has been observed. It has been shown that these titanium nanoparticles have a spherical shape with an average diameter of <50 nm and they possess high chemical activity. This makes it possible when a relative mass concentration of NP reaches ~10–6 to efficiently purify xenon from electronegative impurities for its use as a working medium for a new generation of high-efficiency nuclear radiation detectors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Saito and T. Akiyama, J. Nanomater. 2015, 123696 (2015).CrossRefGoogle Scholar
  2. 2.
    Q. Chen, J. Li, and Y. Li, J. Phys. D: Appl. Phys. 48, 424005 (2015).ADSCrossRefGoogle Scholar
  3. 3.
    M. Y. Park, H. Ha, W. B. Kim, J. S. Park, C. Y. Suh, and S. B. Woo, Solid State Phenom. 124–126, 1281 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Phillips, W. L. Perry, and W. J. Kroenke, US Patent No. 6689192 B1 (2004).Google Scholar
  5. 5.
    I. M. Obodovskii, S. G. Pokachalov, and V. A. Shilov, Sov. Tech. Phys. 25, 1184 (1980).Google Scholar
  6. 6.
    E. Aprile, A. E. Bolotnikov, A. I. Bolozdynya, and T. Doke, Noble Gas Detectors (Wiley-VCH, Weinheim, 2006).CrossRefGoogle Scholar
  7. 7.
    D. Yu. Akimov, V. A. Belov, A. K. Berdnikova, S. V. Bobkov, A. I. Bolozdynya, Yu. V. Gusakov, D. V. Guss, P. S. Dzhumaev, A. G. Dolgolenko, A. G. Kovalenko, E. C. Kozlova, M. Yu. Kolpakov, A. M. Konovalov, T. D. Krakhmalova, A. V. Kumpan, et al., Instrum. Exp. Tech. 60, 782 (2017).CrossRefGoogle Scholar
  8. 8.
    S. G. Pokachalov, M. A. Kirsanov, A. A. Kruglov, and I. M. Obodovski, Nucl. Instrum. Methods Phys. Res., Sect. A 327, 159 (1993).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. Yu. Akimov
    • 1
    • 2
  • V. A. Belov
    • 1
    • 2
  • S. V. Bobkov
    • 5
  • A. I. Bolozdynya
    • 1
  • P. S. Dzhumaev
    • 1
  • A. V. Galavanov
    • 1
  • Yu. V. Gusakov
    • 1
    • 3
  • D. E. Kdib
    • 1
  • A. V. Khromov
    • 1
  • M. Yu. Kolpakov
    • 5
  • A. M. Konovalov
    • 1
    • 2
    • 4
  • A. G. Kovalenko
    • 1
    • 2
  • E. S. Kozlova
    • 1
  • A. V. Kumpan
    • 1
  • A. V. Lukyashin
    • 1
    • 2
  • Yu. A. Melikyan
    • 1
  • O. E. Nepochataya
    • 1
  • D. G. Rudik
    • 1
    • 2
  • M. Yu. Savinov
    • 5
  • A. V. Shakirov
    • 1
  • G. E. Simakov
    • 1
    • 2
    • 4
  • V. V. Sosnovtsev
    • 1
  • A. A. Vasin
    • 1
  • N. V. Volkov
    • 1
  1. 1.National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)MoscowRussia
  2. 2.A.I. Alikhanov Institute for Theoretical and Experimental Physics (ITEP)National Research Center Kurchatov InstituteMoscowRussia
  3. 3.Joint Institute for Nuclear ResearchDubna, Moscow oblastRussia
  4. 4.Moscow Institute of Physics and Technology (State University)MoscowRussia
  5. 5.Chromium Co. Ltd.MoscowRussia

Personalised recommendations