Advertisement

Technical Physics Letters

, Volume 44, Issue 7, pp 581–584 | Cite as

A Superconducting Resonator with a Hafnium Microbridge at Temperatures of 50–350 mK

  • A. V. Merenkov
  • S. V. Shitov
  • V. I. Chichkov
  • A. B. Ermakov
  • T. M. Kim
  • A. V. Ustinov
Article
  • 26 Downloads

Abstract

A high-quality superconducting resonator with a microbridge of hafnium film for use in a circuit for readout a terahertz-band imaging array with frequency division multiplexing is demonstrated experimentally. The variability of the impedance of the bridge at a frequency of 1.5 GHz, which is a key factor in the control of the quality of the resonator, is studied. The bridge, having a thickness of about 50 nm, a critical temperature TC ≈ 380 mK, and a plan size of 2.5 × 2.5 μm, was connected as a load of a resonator made of niobium film with a thickness of about 100 nm (TC ~ 9 K). It is shown that the bridge smoothly changes its impedance proportionally to the bias power in the entire temperature range. The effective thermal insulation of the bridge was measured in a dilution cryostat at temperatures of 50–300 mK. Thermal conductivity G of the bridge was calculated and found to be ~4 × 10–13 W/K, which gives an estimate of the sensitivity of the structure in the bolometric mode NEP ≈ 8 × 10–19 W/Hz1/2 at a temperature of 150 mK.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Lantinga, H. Cho, J. Clarke, M. Dobbs, A. T. Lee, P. L. Richards, H. Spieler, and A. Smith, Millimeter Submillimeter Detectors Astron. 4855, 172 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    P. K. Day, H. G. LeDuc, and B. A. Mazin, Nature (London, U.K.) 425, 817 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    K. D. Irwin and G. C. Hilton, Top. Appl. Phys 99, 63 (2005).Google Scholar
  4. 4.
    W. Holland, Proc. SPIE 6275, 62751E (2006).Google Scholar
  5. 5.
    M. E. Gershenson, D. Gong, T. Sato, B. S. Karasik, and A. V. Sergeev, Appl. Phys. Lett. 79, 2049 (2001).ADSCrossRefGoogle Scholar
  6. 6.
    B. S. Karasik and R. Cantor, Appl. Phys. Lett. 98, 193503 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    B. S. Karasik, A. V. Sergeev, and D. E. Prober, IEEE Trans. Terahertz Sci. Technol. 1, 97 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    S. V. Shitov, N. N. Abramov, A. A. Kuzmin, M. Merker, M. Arndt, S. Wuensch, K. S. Ilin, E. V. Erhan, A. V. Ustinov, and M. Siegel, IEEE Trans. Appl. Supercond. 25, 2101704 (2015).CrossRefGoogle Scholar
  9. 9.
    S. V. Shitov, A. A. Kuzmin, M. Merker, V. I. Chichkov, A. V. Merenkov, A. B. Ermakov, A. V. Ustinov, and M. Siegel, IEEE Trans. Appl. Supercond. 27, 2100805 (2017).CrossRefGoogle Scholar
  10. 10.
    A. A. Kuzmin, S. V. Shitov, A. Scheuring, J. M. Meckbach, K. S. Il’in, S. Wuensch, A. V. Ustinov, and M. Siegel, IEEE Trans. Terahertz Sci. Technol. 3, 25 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    K. D. Irwin, AIP Conf. Proc. 1185, 229 (2009).ADSCrossRefGoogle Scholar
  12. 12.
    J. Gorter and H. B. G. Casimir, Z. Phys. 15, 539 (1934).Google Scholar
  13. 13.
    C. Mattis and J. Bardeen, Phys. Rev. 111, 412 (1958).ADSCrossRefGoogle Scholar
  14. 14.
    A. A. Abrikosov, L. P. Gor’kov, and I. M. Khalatnikov, Sov. Phys. JETP 10, 132 (1959).Google Scholar
  15. 15.
    E. T. Swartz and R. O. Pohl, Rev. Mod. Phys. 61, 605 (1989).ADSCrossRefGoogle Scholar
  16. 16.
    A. V. Uvarov, S. V. Shitov, and A. N. Vystavkin, Metrologiya, No. 9, 3 (2010).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Merenkov
    • 1
  • S. V. Shitov
    • 1
    • 2
  • V. I. Chichkov
    • 1
  • A. B. Ermakov
    • 2
  • T. M. Kim
    • 1
  • A. V. Ustinov
    • 1
    • 3
  1. 1.National University of Science and Technology MISiSMoscowRussia
  2. 2.V.A.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia
  3. 3.Karlsruhe Institute of TechnologyKarlsruheGermany

Personalised recommendations