Advertisement

Technical Physics Letters

, Volume 44, Issue 6, pp 518–521 | Cite as

The Formation of Hollow Lead Structures on the Surface of PbSe Films Treated in Argon Plasma

  • S. P. ZiminEmail author
  • I. I. Amirov
  • V. V. Naumov
  • K. E. Guseva
Article

Abstract

Conditions for ion sputtering of a PbSe/CaF2/Si(111) epitaxial system in high-density inductively coupled plasma of high-frequency low-pressure discharge in argon have been established that ensure the formation of submicron-sized hollow lead structures on a lead-selenide surface. The surface was plasma-treated for time periods within 60–240 s at low energy (20–30 eV) of Ar+ ions, which is close to their sputtering threshold energy. The properties of the obtained material were studied by the techniques of scanning electron microscopy and energy-dispersive X-ray microanalysis. It is shown that the characteristic size, shape, and density of surface structures can be varied within broad limits depending on the time of plasma treatment and temperature of the material surface. Physical processes responsible for the formation of hollow lead structures under the proposed conditions of plasma sputtering are considered.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Zimin and E. S. Gorlachev, Nanostructured Lead Chalcogenides (Yarosl. Gos. Univ., Yaroslavl, 2011) [in Russian].Google Scholar
  2. 2.
    S. Zimin, E. Gorlachev, and I. Amirov, in Encyclopedia of Plasma Technology, Ed. by J. L. Shohet (CRC, New York, 2017), Vol. 1, p. 679.Google Scholar
  3. 3.
    K. Ostrikov, J. Phys. D: Appl. Phys. 47, 224009 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    S. Gupta, D. C. Agarwal, S. A. Khan, S. Neeleshwar, S. Ojha, S. Srivastava, A. Tripathi, S. Amirthapandian, B. K. Panigrahi, and D. K. Avasthi, Mater. Sci. Eng. B 184, 58 (2014).CrossRefGoogle Scholar
  5. 5.
    H. Zogg, M. Arnold, F. Felder, M. Rahim, C. Ebneter, I. Zasavitskiy, N. Quack, S. Blunier, and J. Dual, J. Electron. Mater. 37, 1497 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    S. P. Zimin, I. I. Amirov, and V. V. Naumov, Semiconductors 50, 1125 (2016).ADSCrossRefGoogle Scholar
  7. 7.
    H. Wang and H. Zhu, Nanoscale Res. Lett. 10, 487 (2015).ADSCrossRefGoogle Scholar
  8. 8.
    A. V. Nomoev, Tech. Phys. Lett. 38, 466 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    X. W. Lou, L. A. Archer, and Z. Yang, Adv. Mater. 20, 3987 (2008).CrossRefGoogle Scholar
  10. 10.
    G. Lee, S. Choi, Y. H. Lee, and J. T. Park, Bull. Korean Chem. Soc. 30, 1135 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. P. Zimin
    • 1
    Email author
  • I. I. Amirov
    • 2
  • V. V. Naumov
    • 2
  • K. E. Guseva
    • 1
  1. 1.Yaroslavl State UniversityYaroslavlRussia
  2. 2.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia

Personalised recommendations