Advertisement

Technical Physics Letters

, Volume 43, Issue 11, pp 961–964 | Cite as

The formation of layers of porous crystalline tin dioxide from a composite on the basis of multiwalled carbon-nanotube arrays

  • S. N. Nesov
  • P. M. Korusenko
  • V. V. Bolotov
  • S. N. Povoroznyuk
  • K. E. Ivlev
  • D. A. Smirnov
Article
  • 22 Downloads

Abstract

A new method for the synthesis of porous crystalline tin-dioxide (SnO2) layers from composites on the basis of multiwalled carbon nanotubes (MWCNTs) and nonstoichiometric amorphous tin oxide (MWCNT/SnO x ) is proposed. An MWCN/SnO x composite layer produced by magnetron sputtering is annealed in air atmosphere at 500°C for 30 min. A homogeneous porous layer comprised of crystalline SnO2 spherical particles with a size of about 0.1 μm is obtained as a result. In the process of annealing, nearly all the amount of carbon is removed in the form of gaseous oxides (only a small amount remains in the upper part of the porous SnO2 layer). The structural defectiveness of nanotube walls, which increases because of the magnetron deposition of tin, plays a crucial role in the carbon oxidation and destruction of MWCNTs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Yin, S. Chai, F. Wang, et al., Ceram. Int. 42, 9433 (2016).CrossRefGoogle Scholar
  2. 2.
    C. Li, M. Lv, J. Zuo, et al., Sensors 15, 3789 (2015).CrossRefGoogle Scholar
  3. 3.
    S. N. Nesov, V. V. Bolotov, P. M. Korusenko, S. N. Povoroznyuk, and R. V. Shelyagin, Phys. Solid State 55, 1289 (2013).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Bolotov, P. M. Korusenko, S. N. Nesov, S. N. Povoroznyuk and O. Yu. Vilkov, Phys. Solid State 58, 997 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    M. D. Manyakin, S. I. Kurganskii, O. I. Dubrovskii, et al., Comp. Mater. Sci. 121, 119 (2016).CrossRefGoogle Scholar
  6. 6.
    P. M. Korusenko, S. N. Nesov, V. V. Bolotov, et al., Nucl. Instrum. Methods Phys. Res. B 394, 37 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. V. Fedoseeva, A. V. Okotrub, L. G. Bulusheva, et al., Diam. Relat. Mater. 70, 46 (2016).ADSCrossRefGoogle Scholar
  8. 8.
    O. K. Alexeeva and V. N. Fateev, Int. J. Hydrogen Energy 41, 3373 (2016).CrossRefGoogle Scholar
  9. 9.
    G. Yang, B.-J. Kim, K. Kim, et al., RSC Adv. 5, 31861 (2015).CrossRefGoogle Scholar
  10. 10.
    Y. V. Fedoseeva, L. G. Bulusheva, A. V. Okotrub, et al., Sci. Rep. 5, 9379 (2015).CrossRefGoogle Scholar
  11. 11.
    L. G. Bulusheva, A. V. Okotrub, Y. V. Fedoseeva, et al., Phys. Chem. Chem. Phys. 17, 23741 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • S. N. Nesov
    • 1
  • P. M. Korusenko
    • 1
  • V. V. Bolotov
    • 1
  • S. N. Povoroznyuk
    • 1
    • 4
  • K. E. Ivlev
    • 1
  • D. A. Smirnov
    • 2
    • 3
  1. 1.Omsk Scientific Center, Siberian BranchRussian Academy of SciencesOmskRussia
  2. 2.St. Petersburg State UniversitySt. PetersburgRussia
  3. 3.Institute of Solid State PhysicsDresden University of TechnologyDresdenGermany
  4. 4.Omsk State Technical UniversityOmskRussia

Personalised recommendations