Advertisement

Technical Physics Letters

, Volume 43, Issue 8, pp 716–719 | Cite as

Monodisperse core–shell particles composed of magnetite and dye-functionalized mesoporous silica

  • D. A. Eurov
  • D. A. Kurdyukov
  • A. V. Medvedev
  • D. A. Kirilenko
  • D. R. Yakovlev
  • V. G. Golubev
Article

Abstract

Hybrid particles with a core–shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. R. Ghazanfari, M. Kashefi, S. F. Shams, and M. R. Jaafari, Biochem. Res. Int. 2016, 7840161 (2016).CrossRefGoogle Scholar
  2. 2.
    W. Wu, C. Z. Jiang, and V. A. L. Roy, Nanoscale 8, 19421 (2016).CrossRefGoogle Scholar
  3. 3.
    S. Dutz and R. Hergt, Nanotecnology 25, 452001 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    S. Moise, E. Céspedes, D. Soukup, J. M. Byrne, A. J. El Haj, and N. D. Telling, Sci. Rep. 7, 39922 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    S.-C. Lee, C.-M. Fu, and F.-H. Chang, Appl. Phys. Lett. 103, 163104 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    W. Wu, Q. G. He, and C. Z. Jiang, Nanoscale Res. Lett. 3, 397 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    A. E. Deatsch and B. A. Evans, J. Magn. Magn. Mater. 354, 163 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    L. Borlido, A. M. Azevedo, A. C. A. Roque, and M. R. Aires-Barros, Biotechnol. Adv. 31, 1374 (2013).CrossRefGoogle Scholar
  9. 9.
    J. S. Basuki, A. Jacquemin, L. Esser, Y. Li, C. Boyer, and T. P. Davis, Polym. Chem. 5, 2611 (2014).CrossRefGoogle Scholar
  10. 10.
    S. Riaz, M. Bashir, and S. Naseem, IEEE Trans. Magn. 50, 4003304 (2014).Google Scholar
  11. 11.
    E. Yu. Trofimova, D. A. Kurdyukov, S. A. Yakovlev, D. A. Kirilenko, Yu. A. Kukushkina, A. V. Nashchekin, A. A. Sitnikova, M. A. Yagovkina, and V. G. Golubev, Nanotecnology 24, 155601 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    D. A. Eurov, D. A. Kurdyukov, D. A. Kirilenko, J. A. Kukushkina, A. V. Nashchekin, A. N. Smirnov, and V. G. Golubev, J. Nanopart. Res. 17, 82 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    E. Yu. Stovpiaga, D. A. Eurov, D. A. Kurdyukov, A. N. Smirnov, M. A. Yagovkina, V. Yu. Grigor’ev, V. V. Romanov, D. R. Yakovlev, and V. G. Golubev, Phys. Solid State 59, 1623 (2017).CrossRefGoogle Scholar
  14. 14.
    L. Li, W. Jiang, K. Luo, H. Song, F. Lan, Y. Wu, and Z. Gu, Theranostics 3, 595 (2013).CrossRefGoogle Scholar
  15. 15.
    D. A. Eurov, S. A. Grudinkin, D. A. Kurdyukov, A. V. Medvedev, E. Yu. Stovpiaga, and V. G. Golubev, Tech. Phys. Lett. 41, 919 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    D. M. Hercules and H. Frankel, Science 131, 1611 (1960).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • D. A. Eurov
    • 1
    • 2
  • D. A. Kurdyukov
    • 1
  • A. V. Medvedev
    • 1
  • D. A. Kirilenko
    • 1
  • D. R. Yakovlev
    • 3
  • V. G. Golubev
    • 1
  1. 1.Ioffe InstituteSt. PetersburgRussia
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.Experimentelle Physik 2Technische Universität DortmundDortmundGermany

Personalised recommendations