Technical Physics Letters

, Volume 42, Issue 11, pp 1103–1106 | Cite as

Incubation time of heterogeneous growth of islands in the mode of incomplete condensation

Article

Abstract

The incubation time necessary for the growth of surface islands on heterogeneous nucleation centers to begin has been theoretically analyzed depending on the material gas flow and surface temperature. It is shown that, under heterogeneous growth in the mode of incomplete condensation, the incubation time increases with temperature according to the Arrhenius law and is inversely proportional to the flow, irrespective of the mechanism of diffusion transport to islands. The results obtained have been qualitatively compared with the experimental data on the incubation time for three-dimensional GaN islands arising in the initial stage of self-induced growth of GaN nanowires.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Kashchiev, D. Verdoes, and G. M. van Rosmalen, J. Cryst. Growth 110, 373 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    J. A. Venables, Surf. Sci. 299–300, 798 (1994).CrossRefGoogle Scholar
  3. 3.
    C. V. Thompson, J. Mater. Res. 14, 3161 (1999).ADSCrossRefGoogle Scholar
  4. 4.
    J. A. Venables, G. D. T. Spiller, and M. Hanbucken, Rep. Prog. Phys. 47, 399 (1984).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 51, 1 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).ADSCrossRefGoogle Scholar
  7. 7.
    V. Consonni, A. Trampert, L. Geelhaar, et al., Appl. Phys. Lett. 99, 033102 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    K. Hestroffer, C. Leclere, V. Cantelli, et al., Appl. Phys. Lett. 100, 212107 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    S. Fernández-Garrido, J. K. Zettler, L. Geelhaar, et al., Nano Lett. 15, 1930 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    M. Sobanska, K. P. Korona, Z. R. Zytkiewicz, et al., J. Appl. Phys. 118, 184303 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    R. S. Wagner and W. C. Ellis, Appl. Phys. Lett. 4, 89 (1964).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Sanchez-Garcia, E. Calleja, E. Monroy, et al., J. Cryst. Growth 183, 23 (1998).ADSCrossRefGoogle Scholar
  13. 13.
    E. Galopin, L. Largeau, G. Patriarche, et al., Nanotecnology 22, 245606 (2001).ADSCrossRefGoogle Scholar
  14. 14.
    V. G. Dubrovskii, V. Consonni, A. Trampert, et al., Phys. Rev. B 85, 165317 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    V. G. Dubrovskii, V. Consonni, L. Geelhaar, et al., Appl. Phys. Lett. 100, 153101 (2012).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Dubrovskii, N. V. Sibirev, X. Zhang, et al., Cryst. Growth Des. 10, 3949 (2010).CrossRefGoogle Scholar
  18. 18.
    X. Zhang, V. G. Dubrovskii, N. V. Sibirev, et al., Cryst. Growth Des. 11, 5441 (2011).CrossRefGoogle Scholar
  19. 19.
    G. E. Cirlin, V. G. Dubrovskii, V. N. Petrov, et al., Semicond. Sci. Technol. 13, 1262 (1998).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Dubrovskii, Yu. S. Berdnikov, and Zh. V. Sokolova, Tech. Phys. Lett. 41, 242 (2015).ADSCrossRefGoogle Scholar
  21. 21.
    V. G. Dubrovskii, J. Chem. Phys. 131, 164514 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg National Research University of Information Technologies, Mechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations