Advertisement

Technical Physics Letters

, Volume 42, Issue 8, pp 837–839 | Cite as

Gibbs sampler optimization for analysis of a granulated medium

  • S. N. Koltcov
  • S. I. Nikolenko
  • E. Yu. Koltsova
Article

Abstract

A new variant of the method of probability density distribution recovery for solving topical modeling problems is described. Disadvantages of the Gibbs sampling algorithm are considered, and a modified variant, called the “granulated sampling method,” is proposed. Based on the results of statistical modeling, it is shown that the proposed algorithm is characterized by higher stability as compared to other variants of Gibbs sampling.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Caldwell, D. Kollar, and K. Kröninger, Comput. Phys. Commun. 180, 2197 (2009); arXiv:0808.2552.ADSCrossRefGoogle Scholar
  2. 2.
    I. Chernyavsky, T. Alexandrov, P. Maass, and S. Nikolenko, Proceedings of the German Conference on Bioinformatics (September, 2012), pp. 39–48.Google Scholar
  3. 3.
    Handbook of Markov Chain Monte Carlo, Ed. by S. Brooks, A. Gelman, G. L. Jones, and X.-L. Meng (Chapman & Hall/CRC Press, 2011), pp. 383–399.Google Scholar
  4. 4.
    B. A. Berg and A. Billoire, Markov Chain Monte Carlo Simulations (John Wiley & Sons, 2008).Google Scholar
  5. 5.
    S. Geman and D. Geman, IEEE Trans. Pattern Anal. Machine Intell. 6, 721 (1984).CrossRefGoogle Scholar
  6. 6.
    S. Bodrunova, S. Koltsov, O. Koltsova, S. Nikolenko, and A. Shimorina, Proceedings of the 12th Mexican Int. Conf. on Artificial Intelligence (MICAI 2013) (Springer Verlag, Berlin, 2013), Part I, pp. 265–274.Google Scholar
  7. 7.
    D. Blei, A. Ng, and M. Jordan (Ed. by J. Lafferty), J. Machine Learn. Res. 3, 993 (2003).Google Scholar
  8. 8.
    T. Griffiths and M. Steyvers, Proc. Natl. Acad. Sci. USA 101 (Suppl. 1), 5228 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    C. Nelson et al., Proceedings of the IEEE Conference on Frequency Control (2012).Google Scholar
  10. 10.
    K. V. Vorontsov, Dokl. Math. 89 (3), 301 (2014).MathSciNetCrossRefGoogle Scholar
  11. 11.
    A. N. Tikhonov and V. Ya. Arsenin, Methods of Solution of Ill-Posed Problems (Nauka, Moscow, 1986) [in Russian].zbMATHGoogle Scholar
  12. 12.
    S. Koltsov, O. Koltsova, and S. Nikolenko, Proceedings of the ACM Web Science Conference (WebSci’14, June 23–26, 2014, Bloomington, IN, USA), pp. 161–165.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. N. Koltcov
    • 1
  • S. I. Nikolenko
    • 1
  • E. Yu. Koltsova
    • 1
  1. 1.National Research University Higher School of EconomicsSt. PetersburgRussia

Personalised recommendations