Technical Physics Letters

, Volume 42, Issue 8, pp 818–821 | Cite as

The initial stage of autocatalytic growth of GaAs filamentary nanocrystals

  • E. D. Leshchenko
  • M. A. Turchina
  • V. G. Dubrovskii
Article
  • 29 Downloads

Abstract

The initial stage of growth of autocatalytic GaAs filamentary nanocrystals by the vapor–liquid–crystal mechanism from a Ga droplet with diffusion collection of gallium adatoms from the entire crystal length is investigated. The dependence of the crystal radius on its length at various ratios of fluxes of elements of groups III and V is analyzed theoretically. Various growth regimes (specifically, the regime of radius selffocusing and droplet disappearance) are examined. The calculations for crystals of a small radius are performed with the Gibbs–Thomson effect taken into account.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Jabeen, V. Grillo, S. Rubini, et al., Nanotechnology 19, 275711 (2008).ADSCrossRefGoogle Scholar
  2. 2.
    C. Colombo, D. Spirkoska, M. Frimmer, et al., Phys. Rev. B 77, 155326 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    S. Plissard, K. A. Dick, G. Larrieu, et al., Nanotechnology 21, 385602 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    D. Rudolph, S. Hertenberger, S. Bolte, et al., Nano Lett. 11, 3848 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    V. G. Dubrovskii, G. E. Cirlin, N. V. Sibirev, et al., Nano Lett. 11, 1247 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    G. Priante, S. Ambrosini, V. G. Dubrovskii, et al., Cryst. Growth Des. 13, 3976 (2013).CrossRefGoogle Scholar
  7. 7.
    A. M. Munshi, D. L. Dheeraj, V. T. Fauske, et al., Nano Lett. 14, 960 (2014).ADSCrossRefGoogle Scholar
  8. 8.
    F. Matteini, V. G. Dubrovskii, D. Rüffer, et al., Nanotechnology 26, 105603 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    G. Priante, G. Patriarche, F. Oehler, et al., Nano Lett. 15, 6036 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Dubrovskii, T. Xu, A. Diaz Álvarez, et al., Nano Lett. 15, 5580 (2015).ADSCrossRefGoogle Scholar
  11. 11.
    J. Tersoff, Nano Lett. 15, 6609 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Dubrovskii, N. V. Sibirev, J. C. Harmand, et al., Phys. Rev. B 78, 235301 (2008).ADSCrossRefGoogle Scholar
  13. 13.
    J. C. Harmand, F. Glas, and G. Patriarche, Phys. Rev. B 81, 235436 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).ADSCrossRefGoogle Scholar
  15. 15.
    A. Kelrich, V. G. Dubrovskii, Y. Calahorra, et al., Nanotechnology 26, 085303 (2015).ADSCrossRefGoogle Scholar
  16. 16.
    C. Y. Wen, J. Tersoff, K. Hillerich, et al., Phys. Rev. Lett. 107, 025503 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    F. Glas, Phys. Rev. B 90, 125406 (2014).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    F. Glas, M. R. Ramdani, G. Patriarche, et al., Phys. Rev. B 88, 195304 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Dubrovskii, V. Consonni, L. Geelhaar, et al., Appl. Phys. Lett. 100, 153101 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. D. Leshchenko
    • 1
    • 3
  • M. A. Turchina
    • 1
  • V. G. Dubrovskii
    • 1
    • 2
    • 3
    • 4
  1. 1.St. Petersburg Academic University, Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversitySt. PetersburgRussia
  4. 4.ITMO UniversitySt. PetersburgRussia

Personalised recommendations