Technical Physics Letters

, Volume 42, Issue 7, pp 682–685 | Cite as

The length distribution function of semiconductor filamentary nanocrystals



The length distribution function of semiconductor filamentary nanocrystals is analyzed based on the adsorption–diffusion growth model. It is demonstrated that the asymptotic distribution has a Gaussian shape. If the diffusion flux to the apex comes from the entire lateral surface, the average length increases exponentially with time, and the mean-square deviation is proportional to the average length (exponential growth regime). If the diffusion collection of adatoms is limited to the top of the crystal, the average length increases linearly and the mean-square deviation equals the square root of average length (linear Poisson growth regime). In real-world systems, transition from exponential to Poisson growth occurs at lengths of the order of the diffusion length of adatoms. The dispersion of the distribution is actually defined at the exponential stage. The general classification of length distributions of various crystals is given. It is demonstrated that self-induced GaN- and Ga-catalytic III–V filamentary nanocrystals should be more homogeneous than Au-catalytic ones.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. G. Dubrovskii, Nucleation Theory and Growth of Nanostructures (Springer, 2014).CrossRefGoogle Scholar
  2. 2.
    V. G. Dubrovskii, N. V. Sibirev, and G. E. Cirlin, Tech. Phys. Lett. 30, 682 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    J. C. Harmand, F. Glas, and G. Patriarche, Phys. Rev. B 81, 235436 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    L. E. Froberg, W. Seifert, and J. Johansson, Phys. Rev. B 76, 153401 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    M. C. Plante and R. R. LaPierre, J. Appl. Phys. 105, 114304 (2009).ADSCrossRefGoogle Scholar
  6. 6.
    V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, et al., Surf. Sci. 601, 4395 (2007).ADSCrossRefGoogle Scholar
  7. 7.
    V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, et al., J. Cryst. Growth 289, 31 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).ADSCrossRefGoogle Scholar
  9. 9.
    R. K. Debnath, R. Meijers, T. Richter, et al., Appl. Phys. Lett. 90, 123117 (2007).ADSCrossRefGoogle Scholar
  10. 10.
    V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    F. Glas, M. R. Ramdani, G. Patriarche, et al., Phys. Rev. B 88, 195304 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    F. Matteini, V. G. Dubrovskii, D. Ruffer, et al., Nanotecnology 26, 105603 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    C. Y. Wen, J. Tersoff, K. Hillerich, et al., Phys. Rev. Lett. 107, 025503 (2011).ADSCrossRefGoogle Scholar
  14. 14.
    F. Glas, Phys. Rev. B 90, 125406 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).ADSCrossRefGoogle Scholar
  16. 16.
    V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, et al., Phys. Status Solidi B 241, R30 (2004).ADSCrossRefGoogle Scholar
  17. 17.
    V. G. Dubrovskii and N. V. Sibirev, Phys. Rev. E 91, 042408 (2015).ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    V. G. Dubrovskii, Tech. Phys. Lett. 40, 177 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 51, 1 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Dubrovskii, V. Consonni, L. Geelhaar, et al., Appl. Phys. Lett. 100, 153101 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.St. Petersburg Academic University, Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State University of Information Technology, Mechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations