Technical Physics Letters

, Volume 42, Issue 6, pp 563–566 | Cite as

The influence of the diffusion cooling on the noise band of the superconductor NbN hot-electron bolometer operating in the terahertz range

  • I. V. Tret’yakov
  • N. S. Kaurova
  • B. M. Voronov
  • V. A. Anfert’ev
  • L. S. Revin
  • V. L. Vaks
  • G. N. Gol’tsman
Article

Abstract

Results of an experimental study of the noise temperature (Tn) and noise bandwidth (NBW) of the superconductor NbN hot-electron bolometer (HEB) mixer as a function of its temperature (Tb) are presented. It was determined that the NBW of the mixer is significantly wider at temperatures close to the critical ones (Tc) than are values measured at 4.2 K. The NBW of the mixer measured at the heterodyne frequency of 2.5 THz at temperature Tb close to Tc was ~13 GHz, as compared with 6 GHz at Tb = 4.2 K. This experiment clearly demonstrates the limitation of the thermal flow from the NbN bridge at TbTc for mixers manufactured by the in situ technique. This limitation is close in its nature to the Andreev reflection on the superconductor/ metal boundary. In this case, the noise temperature of the studied mixer increased from 1100 to 3800 K.

References

  1. 1.
    E. M. Gershenzon, G. N. Goltsman, I. G. Gogidze, Y. P. Gousev, A. I. Elantiev, B. S. Karasik, and A. D. Semenov, Sov. Phys. Superconductivity 3, 1582 (1990).Google Scholar
  2. 2.
    W. Zhang, P. Khosropanah, J. R. Gao, E. L. Kollberg, K. S. Yngvesson, T. Bansal, R. Barends, and T. M. Klapwijk, Appl. Phys. Lett. 96, 111113 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    D. E. Prober, Appl. Phys. Lett. 62, 2119 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    https://wwwsofiausraedu.Google Scholar
  5. 5.
    I. Tretyakov, S. Ryabchun, M. Finkel, A. Maslennikova, N. Kaurova, A. Lobastova, B. Voronov, and G. Gol’tsman, Appl. Phys. Lett. 98, 033507 (2011).ADSCrossRefGoogle Scholar
  6. 6.
    J. J. A. Baselmans, A. Baryshev, S. F. Reker, M. Hajenius, J. R. Gao, T.M. Klapwijk, Yu. Vachtomin, S. Maslennikov, S. Antipov, B. Voronov, and G. Gol’tsman, Appl. Phys. Lett. 86, 163503 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    N. Vercruyssen, T. G. A. Verhagen, M. G. Flokstra, J. P. Pekola, and T. M. Klapwijk, Phys. Rev. B 85, 224503 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    H. Pothier, S. Gueron, N. O. Birge, D. Esteve, and M. H. Devoret, Phys. Rev. Lett. 79, 18 (1997).CrossRefGoogle Scholar
  9. 9.
    G. R. Boogaard, A. H. Verbruggen, W. Belzig, and T. M. Klapwijk, Phys. Rev. B 69, 220503(R) (2004).ADSCrossRefGoogle Scholar
  10. 10.
    I. Tretyakov, S. Maslennikov, S. Semenov, M. Finkel, S. Ryabchun, N. Kaurova, B. Voronov, G. Gol’tsman, and T. M. Klapwijk, Proceedings of the 26th Int. Symp. on Space Terahertz Technology (ISSTT, Cambridge, 2015), p. 228.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • I. V. Tret’yakov
    • 1
    • 2
  • N. S. Kaurova
    • 1
  • B. M. Voronov
    • 1
  • V. A. Anfert’ev
    • 2
  • L. S. Revin
    • 2
  • V. L. Vaks
    • 2
  • G. N. Gol’tsman
    • 1
  1. 1.Moscow State University of EducationMoscowRussia
  2. 2.Institute for Physics of MicrostructuresRussian Academy of SciencesNizhny NovgorodRussia

Personalised recommendations