Advertisement

Technical Physics Letters

, Volume 42, Issue 3, pp 332–335 | Cite as

A model of axial heterostructure formation in III–V semiconductor nanowires

  • V. G. Dubrovskii
Article

Abstract

A kinetic model of the formation of axial heterostructures in nanocrystalline wires (nanowires, NWs) of III–V semiconductor compounds growing according to the vapor–liquid–solid (VLS) mechanism is proposed. A general system of nonstationary equations for effective fluxes of two elements of the same group (e.g., group III) is formulated that allows the composition profile of a heterostructure to be calculated as a function of the coordinate and epitaxial growth conditions, including the flux of a group V element. Characteristic times of the composition relaxation, which determine the sharpness of the heteroboundary (heterointerface), are determined in the linear approximation. A temporal interruption (arrest) of fluxes during the switching of elements for a period exceeding these relaxation times must increase sharpness of the heteroboundary. Model calculations of the composition profile in a double GaAs/InAs/GaAs axial heterostructure have been performed for various NW radii.

Keywords

Technical Physic Letter Composition Profile Indium Content Group Versus Element Versus Semiconductor Compound 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Zhang, V. G. Dubrovskii, N. V. Sibirev, et al., Cryst. Growth Des. 11, 5441 (2011).CrossRefGoogle Scholar
  2. 2.
    G. Abstreiter, Phys. Status Solidi RRL 1, 20 (2013).Google Scholar
  3. 3.
    S. G. Ghalamestani, M. Ek, M. Ghasemi, et al., Nanoscale 6, 1086 (2014).ADSCrossRefGoogle Scholar
  4. 4.
    M. T. Bjork, B. J. Ohlsson, T. Saas, et al., Nano Lett. 2, 87 (2002).ADSCrossRefGoogle Scholar
  5. 5.
    M. Tchernycheva, G. E. Cirlin, G. Patriarche, et al., Nano Lett. 7, 1500 (2007).ADSCrossRefGoogle Scholar
  6. 6.
    G. Priante, G. Patriarche, F. Oehler, et al., Nano Lett. 15, 6036 (2015); doi 10.1021/acsnanolett.5b02224ADSCrossRefGoogle Scholar
  7. 7.
    P. Periwal, N. V. Sibirev, G. Patriarche, et al., Nano Lett. 14, 5140 (2014).CrossRefGoogle Scholar
  8. 8.
    N. V. Sibirev, Tech. Phys. Lett. 41 (3), 209 (2015).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Dubrovskii and M. V. Nazarenko, J. Chem. Phys. 132, 114507 (2010).ADSCrossRefGoogle Scholar
  10. 10.
    M. Ghasemi, B. Sundman, S. G. Fries, et al., J. Alloys Compd. 600, 178 (2014).CrossRefGoogle Scholar
  11. 11.
    V. G. Dubrovskii, N. V. Sibirev, R. A. Suris, et al., Surf. Sci. 601, 4395 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    V. G. Dubrovskii, I. P. Soshnikov, N. V. Sibirev, et al., J. Cryst. Growth 289, 31 (2006).ADSCrossRefGoogle Scholar
  13. 13.
    V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    V. G. Dubrovskii, Appl. Phys. Lett. 104, 053110 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    G. Priante, S. Ambrosini, V. G. Dubrovskii, et al., Cryst. Growth Des. 13, 3976 (2013).CrossRefGoogle Scholar
  16. 16.
    V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Kukushkin and A. V. Osipov, Phys. Solid State 36, 687 (1994).ADSGoogle Scholar
  18. 18.
    S. A. Kukushkin and A. V. Osipov, J. Phys. Chem. Solids 56, 831 (1995).ADSCrossRefGoogle Scholar
  19. 19.
    V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, et al., Phys. Status Solidi (b) 241, R30 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, M. V. Nazarenko, and V. G. Dubrovskii, Phys. Solid State 52 (7), 1531 (2010).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.St. Petersburg Academic University, Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State University of Information TechnologyMechanics and Optics (ITMO University)St. PetersburgRussia

Personalised recommendations