Technical Physics Letters

, Volume 42, Issue 1, pp 15–18 | Cite as

Boundaries of the ambiguity area upon reflection of compression shock waves

  • P. V. Bulat
  • V. V. Upyrev


Oblique shock waves can be reflected from hard walls, the axis, or the plane of symmetry, as well as from other counterpropagating shock waves with the formation of regular and Mach shock wave configurations. The specific form of shock wave structures is determined by the parameters of the problem: Mach number and intensity of incident shock waves. On the plane of parameters, there exists an ambiguity area in which laws of conservation admit both the regular and Mach reflection of shock waves. The boundaries of this region have been determined.


Shock Wave Mach Number Technical Physic Letter Wedge Angle Incident Shock Wave 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Ben-Dor, M. Ivanov, E. I. Vasilev, and T. Elperin, Prog. Aerosp. Sci. 38, 347 (2002).CrossRefGoogle Scholar
  2. 2.
    M. S. Ivanov, A. N. Kudryavtsev, S. B. Nikiforov, and D. V. Khotyanovsky, Aeromekh. Gaz. Din., No. 3, 73 (2002).Google Scholar
  3. 3.
    M. S. Ivanov, G. Ben-Dor, T. Elperin, A. Kudryavtsev, and D. Khotyanovsky, AIAA J. 39 (5), 972 (2001).ADSCrossRefGoogle Scholar
  4. 4.
    G. Ben-Dor, Shock Wave Reflection Phenomena, 2nd ed. (Springer, New York, 2007).zbMATHGoogle Scholar
  5. 5.
    J. von Neumann, Oblique Reflection of Shocks, Explos. Res. Rep. 12, Navy Dept., Bureau of Ordinance, Washington, DC (1943).Google Scholar
  6. 6.
    V. N. Uskov, P. V. Bulat, and N. V. Prodan, Fundam. Issled., No. 9(2), 414 (2012).Google Scholar
  7. 7.
    V. N. Uskov, P. V. Bulat, and N. V. Prodan, Fundam. Issled., No. 11(1), 168 (2012).Google Scholar
  8. 8.
    P. V. Bulat and V. N. Uskov, Res. J. Appl. Sci., Eng. Technol. 8 (1), 135 (2014).Google Scholar
  9. 9.
    L. G. Gvozdeva, V. L. Borsch, and S. A. Gavrenkov, in 28th International Symposium on Shock Waves, Manchester, UK, 2011, vol. 2, Ed. by K. Kontis (Springer, 2012), p.587.Google Scholar
  10. 10.
    P. V. Bulat, V. V. Upyrev, and P. V. Denisenko, Nauch. Tekh. Vest. Inform. Tekhnol. Mekh. Opt. 15 (2), 338 (2015).CrossRefGoogle Scholar
  11. 11.
    P. V. Bulat, P. V. Denisenko, and N. V. Prodan, Nauch. Tekh. Vest. Inform. Tekhnol. Mekh. Opt. 15 (2), 346 (2015).CrossRefGoogle Scholar
  12. 12.
    A. L. Adrianov, A. L. Starykh, and V. N. Uskov, Interference of Steady Gasdynamic Discontinuities (Nauka, Novosibirsk, 1995) [in Russian].Google Scholar
  13. 13.
    V. N. Uskov and P. S. Mostovykh, Shock Waves 20, 119 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    E. E. Ilina, T.E. Ilina, and P. V. Bulat, Am. J. Appl. Sci. 11, 1914 (2014).CrossRefGoogle Scholar
  15. 15.
    V. N. Uskov and P. S. Mostovykh, in 20th International Shock Interaction Symposium, Stockholm 2012 (KTH, Stockholm, 2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.ITMO UniversitySt. PetersburgRussia

Personalised recommendations