Technical Physics Letters

, Volume 41, Issue 12, pp 1136–1138 | Cite as

Model of selective growth of III–V nanowires

Article
  • 65 Downloads

Abstract

A kinetic model of growth of nanowires of III–V semiconductor compounds (including nitride ones) in the absence of metal catalyst is proposed; these conditions correspond to the methods of selective epitaxy or self-induced growth. A stationary solution for the nanowire growth rate is obtained, which indicates that the growth can be limited by not only the kinetics of III-group element with allowance for the surface diffusion (as was suggested earlier), but also the flow of the V-group element. Different modes are characterized by radically different dependences of the growth rate on the nanowire radius. Under arsenicenriched conditions, a typical dependence with a maximum and decay at large radii (limited by the gallium adatom diffusion) is observed. Under gallium-enriched conditions, there is a transition to the growth rate that is practically independent of the radius and linearly increases with an increase in the arsenic flow.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Hamano, H. Hirayama, and Y. Aoyagi, Jpn. J. Appl. Phys., Part 2 36, L286 (1997).ADSCrossRefGoogle Scholar
  2. 2.
    M. Akabori, J. Takeda, J. Motohisa, et al., Nanotechnology 14, 1071 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. Noborisaka, J. Motohisa, and T. Fukui, Appl. Phys. Lett. 86, 213102 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    P. J. Poole, J. Lefebvre, and J. Fraser, Appl. Phys. Lett. 83, 2055 (2005).ADSCrossRefGoogle Scholar
  5. 5.
    Q. Gao, D. Saxena, F. Wang, et al., Nano Lett. 14, 5206 (2014).CrossRefGoogle Scholar
  6. 6.
    E. Galopin, L. Largeau, G. Patriarche, et al., Nanotecnology 22, 245606 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    V. Consonni, V. G. Dubrovskii, A. Trampert, et al., Phys. Rev. B 85, 155313 (2012).ADSCrossRefGoogle Scholar
  8. 8.
    V. G. Dubrovskii, V. Consonni, A. Trampert, et al., Phys. Rev. B 85, 165317 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    V. G. Dubrovskii, V. Consonni, L. Geelhaar, et al., Appl. Phys. Lett. 100, 153101 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    K. W. Ng, W. S. Ko, D. T. T. Tran, et al., ACS Nano 7, 100 (2013).CrossRefGoogle Scholar
  11. 11.
    V. G. Dubrovskii, N. V. Sibirev, X. Zhang, et al., Cryst. Growth Des. 10, 3949 (2010).CrossRefGoogle Scholar
  12. 12.
    G. E. Cirlin, V. G. Dubrovskii, N. V. Sibirev, I. P. Soshnikov, Yu. B. Samsonenko, A. A. Tonkikh, and V. M. Ustinov, Semiconductors 39, 557 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    V. G. Dubrovskii, I. P. Soshnikov, G. E. Cirlin, et al., Phys. Status Solidi B 241, R30 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    N. V. Sibirev, M. A. Timofeeva, A. D. Bol’shakov, et al., Phys. Solid State 52, 1531 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    G. Priante, S. Ambrosini, V. G. Dubrovskii, et al., Cryst. Growth Des. 13, 3976 (2013).CrossRefGoogle Scholar
  16. 16.
    V. G. Dubrovskii, Appl. Phys. Lett. 104, 053110 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Kukushkin and A. V. Osipov, Prog. Surf. Sci. 51, 1 (1996).ADSCrossRefGoogle Scholar
  18. 18.
    V. G. Dubrovskii, Phys. Status Solidi B 171, 345 (1992).ADSCrossRefGoogle Scholar
  19. 19.
    E. Gil, V. G. Dubrovskii, G. Avit, et al., Nano Lett. 14, 3938 (2014).ADSCrossRefGoogle Scholar
  20. 20.
    V. G. Dubrovskii, Phys. Rev. B 87, 195426 (2013).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  1. 1.St. Petersburg Academic UniversitySt. PetersburgRussia
  2. 2.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.State University of Information TechnologiesMechanics and OpticsSt. PetersburgRussia

Personalised recommendations