Technical Physics Letters

, Volume 40, Issue 12, pp 1095–1097 | Cite as

Phase synchronization of the hydrodynamic and orientational modes during electroconvection in a nematic liquid crystal

  • E. S. Batyrshin
  • A. P. Krekhov
  • O. A. Skaldin
  • V. A. Delev


The spatiotemporal dynamics of oscillating electroconvective structures appearing in a nematic liquid crystal (NLC) under the combined action of applied alternating (ac) and direct (dc) electric voltages has been experimentally studied. It is established that an increase in the dc component of the applied voltage leads to synchronization of the hydrodynamic mode with the orientational twist mode of the NLC director. The synchronization parameter and the phase shift of the modes are determined as function of the applied dc voltage. The results confirm the flexoelectric mechanism of synchronization.


Technical Physic Letter Nematic Liquid Crystal Phase Synchronization Mode Synchronization Hydrodynamic Mode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: Universal Concept in Nonlinear Sciences (Cambridge Univ. Press, Cambridge, 2001; Tekhnosfera, Moscow, 2003), Ch. 1.CrossRefGoogle Scholar
  2. 2.
    P. de Gennes, The Physics of Liquid Crystals (Clarendon Press, Oxford, UK, 1974; Mir, Moscow, 1977).Google Scholar
  3. 3.
    L. Kramer and W. Pesch, in Pattern Formation in Liquid Crystals, Ed. by A. Buka and L. Kramer (Springer, New York, 1996), p. 221.Google Scholar
  4. 4.
    E. Plaut and W. Pesch, Phys. Rev. E 59, 1747 (1999).ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Dennin, Phys. Rev. E 62, 6780 (2000).ADSCrossRefGoogle Scholar
  6. 6.
    V. A. Delev, O. A. Scaldin, and A. N. Chuvyrov, Liq. Cryst. 12, 441 (1992).CrossRefGoogle Scholar
  7. 7.
    V. A. Delev, O. A. Skaldin, and A. N. Chuvyrov, Sov. Phys. Crystallogr. 37, 854 (1992).Google Scholar
  8. 8.
    E. S. Batyrshin, V. A. Delev, and A. N. Chuvyrov, Crystallogr. Rep. 44, 506 (1999).ADSGoogle Scholar
  9. 9.
    V. A. Delev, E. S. Batyrshin, O. A. Scaldin, and A. N. Chuvyrov, Mol. Cryst. Liq. Cryst. 329, 499 (1999).CrossRefGoogle Scholar
  10. 10.
    V. A. Delev, O. A. Scaldin, E. S. Batyrshin, and E. G. Akselrod, Tech. Phys. 56(1), 8 (2011).CrossRefGoogle Scholar
  11. 11.
    A. Krekhov, W. Pesch, and A. Buka, Phys. Rev. E 83, 051706 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    H. Amm, R. Stannarius, and A. G. Rossberg, Physica D 126, 171 (1999).ADSCrossRefGoogle Scholar
  13. 13.
    M. Dennin, D. S. Cannell, and G. Ahlers, Phys. Rev. E 57, 638 (1998).ADSCrossRefGoogle Scholar
  14. 14.
    J.-P. Lachaux et al., Human Brain Mapping 8, 194 (1999).CrossRefGoogle Scholar
  15. 15.
    E. S. Batyrshin, A. P. Krekhov, O. A. Skaldin, and V. A. Delev, J. Exp. Theor. Phys. 114(6), 1052 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    J. A. Acebron et al., Rev. Mod. Phys. 77, 137 (2005).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. S. Batyrshin
    • 1
  • A. P. Krekhov
    • 1
  • O. A. Skaldin
    • 1
  • V. A. Delev
    • 1
  1. 1.Institute of Molecular and Crystal Physics, Ufa Scientific CenterRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations