Advertisement

Technical Physics Letters

, Volume 40, Issue 11, pp 1000–1002 | Cite as

The electric activity of special grain boundaries in multicrystalline silicon grown from metallurgical refined silicon

  • S. M. Peshcherova
  • A. I. Nepomnyashchikh
  • L. A. Pavlova
Article

Abstract

The properties of special grain boundaries in multicrystalline silicon (mc-Si) grown from metallurgical refined silicon by the Bridgman-Stockbarger method have been studied. The electric activity of grain boundaries was characterized by measuring the electron-beam-induced current. Structural features of the mc-Si samples were studied by scanning electron microscopy, electron-probe microanalysis, and atomic force microscopy techniques.

Keywords

Shear Band Technical Physic Letter Electron Beam Induce Current Twin Lamella Atomic Force Microscopy Technique 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Peshcherova, A. I. Nepomnyashchikh, V. A. Bychinskii, L. A. Pavlova, and Yu. V. Sokol’nikova, Materialovedenie, No. 6, 52 (2013).Google Scholar
  2. 2.
    A. I. Nepomnyashchikh, R. V. Presnyakov, I. A. Eliseev, and Yu. V. Sokol’nikova, Tech. Phys. Lett. 37(8), 739 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    S. M. Peshcherova, L. A. Pavlova, A. I. Nepomnyashchikh, I. A. Eliseev, and Yu. V. Sokol’nikova, Izv. Vyssh. Ucheb. Zaved.: Mater. Elektron. Tekh., No. 4, 12 (2012).Google Scholar
  4. 4.
    J. Chen, T. Sekiguchi, R. Xie, P. Ahmet, T. Chicyo, D. Yang, S. Ito, and F. Yin, Scr. Mater. 52, 1211 (2005).CrossRefGoogle Scholar
  5. 5.
    J. Bailey, S. A. McHugo, H. Hieslmair, and E. R. Weber, J. Electron. Mater. 25, 1417 (1996).ADSCrossRefGoogle Scholar
  6. 6.
    S. A. McHugo, J. Bailey, H. Hieslmair, and E. R. Weber, Proceedings of the 24th IEEE Photovoltaic Specialist Conference (1994), Vol. 2, pp. 1607–1610.Google Scholar
  7. 7.
    S. A. McHugo, H. Hieslmair, and E. R. Weber, Appl. Phys. A 64, 127 (1997).ADSCrossRefGoogle Scholar
  8. 8.
    E. R. Weber, Appl. Phys. A 30, 1 (1983).ADSCrossRefGoogle Scholar
  9. 9.
    J. R. Davis, A. Rohatgi, R. H. Hopkins, P. D. Blais, P. Rai-Choudhury, J. R. McCormic, and H. C. Mollenkopf, IEEE Trans. Electron. Dev. ED-27, 677 (1980).ADSCrossRefGoogle Scholar
  10. 10.
    R. H. Hopkins and A. Rohatgi, J. Cryst. Growth 75, 67 (1985).ADSCrossRefGoogle Scholar
  11. 11.
    S. A. McHugo, Appl. Phys. Lett. 71, 1984 (1997).ADSCrossRefGoogle Scholar
  12. 12.
    A. Voight, C. Hassler, D. Karg, H. P. Strunk, G. Pensl, and M. Schulz, Solid State Phenom. 51–52, 497 (1996).CrossRefGoogle Scholar
  13. 13.
    S. M. Peshcherova, A. I. Nepomnyashchikh, L. A. Pavlova, I. A. Eliseev, and R. V. Presnyakov, Semiconductors 48(4), 476 (2014).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • S. M. Peshcherova
    • 1
  • A. I. Nepomnyashchikh
    • 1
  • L. A. Pavlova
    • 1
  1. 1.Vinogradov Institute of Geochemistry, Siberian BranchRussian Academy of SciencesIrkutskRussia

Personalised recommendations