Technical Physics Letters

, Volume 40, Issue 7, pp 553–557 | Cite as

Single crystal diamond probes for atomic-force microscopy

  • F. T. Tuyakova
  • E. A. Obraztsova
  • D. V. Klinov
  • R. R. Ismagilov
Article

Abstract

Results obtained in the development and testing of high-strength, chemically inert, and sharply pointed single crystal diamond probes for atomic-force microscopy are presented. The probes were fabricated on the basis of pyramidal diamond single crystals produced by selective oxidation of polycrystalline films grown by chemical vapor deposition. A procedure was developed for attachment of single needles to cantilevers of silicon probes. A transmission electron microscope was used to find that the apical angle of the pyramidal diamond crystallites is about 10° and the radius of curvature of the apex of the diamond crystallite is 2–10 nm. It is shown for the example of two test samples (graphite surface and DNA molecules) that the diamond probes can be effectively used in atomic-force microscopy and make it possible to improve the image quality compared with standard silicon probes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Handbook of Micro/Nanotribology, 2nd ed., Ed. by B. Bhushan, CRC Press, 1999.Google Scholar
  2. 2.
    X. N. Xie, H. J. Chung, C. H. Sow, and A. T. S. Wee, Mater. Sci. Eng. R: Reports 54(1–2), 1 (2006).CrossRefGoogle Scholar
  3. 3.
    P. G. Kopylov, A. N. Obraztsov, and P. V. Shvets, Crystallogr. Reports. 55(4), 710 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    K.-H. Kim, N. Moldovan, Ch. Ke, et al., Small 1(8–9), 866 (2005).CrossRefGoogle Scholar
  5. 5.
    B. Mesa and S. Magonov, J. Phys.: Conf. Ser. 61, 770 (2007).ADSGoogle Scholar
  6. 6.
    Diamond CD-AFM Probe Data Sheet, Adama Innovations Ltd., 2010.Google Scholar
  7. 7.
    A. A. Zolotukhin, R. R. Ismagilov, M. A. Dolganov, and A. N. Obraztsov, J. Nanoelectron. Optoelectron. 7(1), 22 (2012).CrossRefGoogle Scholar
  8. 8.
    A. N. Obraztsov, P. G. Kopylov, A. L. Chuvilin, and N. V. Savenko, Diamond Relat. Mater. 18(10), 1289 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    P. G. Kopylov, B. A. Loginov, R. R. Ismagilov, and A. N. Obraztsov, Instrum. Exp. Tech. 53(4), 613 (2010).CrossRefGoogle Scholar
  10. 10.
    S. O. Shiryaeva and A. I. Grigor’ev, Tech. Phys. 39(3), 229 (1994).Google Scholar
  11. 11.
    D. V. Klinov, T. V. Neretina, V. V. Prokhorov, et al., Biochemistry (Moscow) 74(10), 1150 (2009).CrossRefGoogle Scholar
  12. 12.
    D. V. Klinov, B. Dwir, E. Kapon, et al., Nanotechnology 18(22), 225 102 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • F. T. Tuyakova
    • 1
    • 2
    • 3
    • 4
  • E. A. Obraztsova
    • 1
    • 2
    • 3
    • 4
  • D. V. Klinov
    • 1
    • 2
    • 3
    • 4
  • R. R. Ismagilov
    • 1
    • 2
    • 3
    • 4
  1. 1.Moscow State Technical University of Radio Engineering, Electronics, and AutomationMoscowRussia
  2. 2.Shemyakin-Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Prokhorov Institute of General PhysicsRussian Academy of SciencesMoscowRussia
  4. 4.Moscow State UniversityMoscowRussia

Personalised recommendations