Technical Physics Letters

, Volume 40, Issue 3, pp 215–218 | Cite as

The effect of nanolayer thickness on the structure and properties of multilayer TiN/MoN coatings

  • A. D. Pogrebnjak
  • V. M. Beresnev
  • O. V. Bondar
  • G. Abadias
  • P. Chartier
  • B. A. Postol’nyi
  • A. A. Andreev
  • O. V. Sobol’
Article

Abstract

The effect of nanolayer thickness on the structure and properties of nanocomposite multilayer TiN/MoN coatings is revealed. The multilayer (alternating) TiN/MoN coatings are prepared by the Arc-PVD method. The selected thickness of the nanolayers is 2, 10, 20, and 40 nm. The formation of two phases—TiN (fcc) and γ-Mo2N—is found. The ratio of Ti and Mo concentrations varies with varying layer thickness. The maximum hardness value obtained for different thicknesses of the layers does not exceed 28–31 GPa. The stability of TiN/MoN during cutting and tribological tests is significantly higher than that of products with TiN coatings. The nanostructured multilayer coatings with layer thicknesses of 10 and 20 nm exhibit the lowest friction coefficient of 0.09–0.12.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Kazmanli, M. Urgen, and A. F. Cakir, Surf. Coat. Technol. 167, 77 (2003).CrossRefGoogle Scholar
  2. 2.
    A. D. Korotaev, V. Yu. Moshkov, et al., Fiz. Mezomekh. 8(5), 103 (2005).Google Scholar
  3. 3.
    A. D. Pogrebnyak, A. P. Shpak, N. A. Azarenkov, and V. M. Beresnev, Phys. Usp. 52, 29 (2009).CrossRefADSGoogle Scholar
  4. 4.
    A. D. Pogrebnjak, A. G. Ponomarev, A. P. Shpak, and Yu. A. Kunitskii, Phys. Usp. 55, 270 (2012).CrossRefADSGoogle Scholar
  5. 5.
    A. D. Pogrebnjak, V. M. Beresnev, A. A. Dem’yanenko, V. S. Baidak, F. F. Komarov, M. V. Kaverin, N. A. Makhmudov, and D. A. Kolesnikov, Phys. Solid State 54, 1882 (2012).CrossRefADSGoogle Scholar
  6. 6.
    S. Veprek, A. S. Argon, and R. F. Zhang, Philos. Mag. Lett. 87, 955 (2007).CrossRefADSGoogle Scholar
  7. 7.
    J. Musil, Surf. Coat. Technol. 207, 50 (2012).CrossRefMathSciNetGoogle Scholar
  8. 8.
    S. Veprek and M. G. J. Veprek-Heijman, Thin Solid Films 522, 274 (2012).CrossRefADSGoogle Scholar
  9. 9.
    E. B. Bojko, F. F. Komarov, Cz. Karwat, et al., Vacuum 78, 241 (2005).CrossRefGoogle Scholar
  10. 10.
    P. Zukowsky, F. F. Komarov, Cz. Karwat, et al., Vacuum 83, S204 (2009).CrossRefGoogle Scholar
  11. 11.
    J. S. Koehler, Phys. Rev. B 2, 547 (1970).CrossRefADSGoogle Scholar
  12. 12.
    Ya. A. Lyashenko, A. V. Khomenko, and L. S. Metlov, Tech. Phys. 55, 1193 (2010).CrossRefGoogle Scholar
  13. 13.
    P. V. Zukowski, T. N. Koltunowicz, J. Partyka, et al., Vacuum 83, S280 (2009).CrossRefGoogle Scholar
  14. 14.
    A. V. Khomenko and N. V. Prodanov, Condens. Matter Phys. 11(4(56)), 615 (2008).CrossRefGoogle Scholar
  15. 15.
    T. N. Koltunowicz, P. Zukowski, V. V. Fedotova, et al., Acta Phys. Pol. 120(1), 39 (2011).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. D. Pogrebnjak
    • 1
    • 2
    • 3
    • 4
    • 5
  • V. M. Beresnev
    • 1
    • 2
    • 3
    • 4
    • 5
  • O. V. Bondar
    • 1
    • 2
    • 3
    • 4
    • 5
  • G. Abadias
    • 1
    • 2
    • 3
    • 4
    • 5
  • P. Chartier
    • 1
    • 2
    • 3
    • 4
    • 5
  • B. A. Postol’nyi
    • 1
    • 2
    • 3
    • 4
    • 5
  • A. A. Andreev
    • 1
    • 2
    • 3
    • 4
    • 5
  • O. V. Sobol’
    • 1
    • 2
    • 3
    • 4
    • 5
  1. 1.Sumy State UniversitySumyUkraine
  2. 2.Karazin National University of KharkivKharkivUkraine
  3. 3.Institute P’University of PoitiersChasseneuil-FuturoscopeFrance
  4. 4.Kharkiv Institute of Physics and TechnologyKharkivUkraine
  5. 5.National Technical University Kharkiv Polytechnic InstituteKharkivUkraine

Personalised recommendations