Technical Physics Letters

, Volume 39, Issue 10, pp 924–927 | Cite as

Modeling the deflection of relativistic particles in axial and planar channels of a silicon crystal

Article

Abstract

Modeling the deflection of protons and π-mesons in axial and planar channels of a bent silicon crystal was performed by numerically solving the kinetic Fokker-Planck equation in the space of transverse coordinates and velocities, as well as in the space of transverse energies. We discuss the reasons of forming an angular distribution with two maxima for the beam of π-mesons under planar channeling in a silicon crystal that was obtained as a result of simulation in our previous work. The modeling results in the space of transverse energies and in the phase space of transverse coordinates and velocities prove to be in rather good agreement for protons, but are somewhat different for π-mesons.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Scandale, A. Vomiero, E. Bagli, et al., Phys. Lett. A 680, 301 (2009).CrossRefGoogle Scholar
  2. 2.
    W. Scandale, A. Vomiero, E. Bagli, et al., Phys. Lett. A 681, 233 (2009).CrossRefGoogle Scholar
  3. 3.
    W. Scandale, A. Vomiero, S. Baricordi, et al., Phys. Rev. Lett. 101, 164801 (2008).ADSCrossRefGoogle Scholar
  4. 4.
  5. 5.
    V. P. Koshcheev, D. A. Morgun, and Yu. N. Shtanov, Tech. Phys. Lett. 38(6), 593 (2012).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kitagawa and Y. H. Ohtsuki, Phys. Rev. 8(7), 3117–3123 (1973).ADSCrossRefGoogle Scholar
  7. 7.
    V. V. Beloshitskii, M. A. Kumakhov, and V. A. Ryabov, Sov. Phys. JETP 60(3), 498 (1984).Google Scholar
  8. 8.
    D. S. Gemmell, Rev. Mod. Phys. 46(1), 129 (1974).ADSCrossRefGoogle Scholar
  9. 9.
    V. P. Koshcheev, Russ. Phys. J. 40(8), 736 (1997).CrossRefGoogle Scholar
  10. 10.
    V. P. Koshcheev, D. A. Morgun, and T. A. Panina Stochastic Dynamics of the Channeling Effect in Crystals and Nanotubes (Poligrafist, Khanty-Mansiisk, 2008) [in Russian].Google Scholar
  11. 11.
    K.V. Gardiner, Stochastic Methods in Natural Sciences (Springer, Berlin, 1985).CrossRefGoogle Scholar
  12. 12.
    S. M. Rytov, Introduction to Statistical Radiophysics. Part 1. Random Processes (Nauka, Moscow, 1976) [in Russian].Google Scholar
  13. 13.
    V. P. Koshcheev and D. A. Morgun, J. Surf. Investig.: X-RAY, Synchrotr. Neutr. Techn. 14(5), 571 (1998).Google Scholar
  14. 14.
    V. P. Koshcheev, Izv. Vyssh. Uchebn. Zaved., Fiz. No. 4, 123–124 (1990).Google Scholar
  15. 15.
    G. Marsaglia and T. A. Bray, SIAM Rev. 6(3), 260–264 (1964).MathSciNetADSCrossRefMATHGoogle Scholar
  16. 16.
    G. Molière, Z. Naturforsch. A 2, 133–145 (1947).ADSMATHGoogle Scholar
  17. 17.
    V. A. Bazylev, V. I. Glebov, and V. V. Goloviznin, Sov. Phys. JETP 64(1), 14 (1986).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. P. Koshcheev
    • 1
    • 2
  • D. A. Morgun
    • 1
    • 2
  • Yu. N. Shtanov
    • 1
    • 2
  1. 1.National Research University (Moscow Aviation Institute)Strela Branch, Zhukovsky, Moscow oblastRussia
  2. 2.Surgut State UniversitySurgutRussia

Personalised recommendations