Technical Physics Letters

, Volume 39, Issue 8, pp 694–697 | Cite as

Mixing of states in quantum wells for terahertz polariton emitters

  • I. V. Iorsh
  • M. A. Kaliteevski
  • K. A. Ivanov
  • K. V. Kavokin
Article

Abstract

Two possible InGaAs/GaAs quantum-well structures ensuring the presence of radiative transitions between the polariton states in a microresonator with a quantum well, which are accompanied by generation of terahertz photons, are discussed in this work. For the first structure, symmetry breakdown that is required for the emission of a terahertz photon is conducted in a quantum well with refractive index gradient profile, which results in mixing of the states of a polariton and a dark exciton. Parameters of the quantum well, in which the energy of the second exciton level corresponds to the upper polariton energy, are determined. A double quantum well with exciton states split due to quantum-mechanical tunneling through a barrier is used in the second structure. Symmetry breakdown, which allows one to mix an exciton with a “dark” exciton, is ensured by adjusting the energy of electron levels in a double quantum well by applying an electric field to the structure. A hole remains localized in one of the wells.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Todorov, A. M. Andrews, R. Colombelli, S. De Liberato, C. Ciuti, P. Klang, G. Strasser, and C. Sirtori, Phys. Rev. Lett. 105, 196 402 (2010).CrossRefGoogle Scholar
  2. 2.
    B. Zaks, D. Stehr, T. A. Truong, P. M. Petroff, S. Hughess, and M. S. Sherwin, New J. Phys. 13, 083009 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    M. Porer, J. M. Menard, A. Leitenstorfer, R. Huber, R. Degl’Innocenti, S. Zanotto, G. Biasiol, L. Sorba, and A. Tredicucci, Phys. Rev. B 85, 081302 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    K. Kavokin, M. Kaliteevski, R. Abram, A. Kavokin, S. Sharkova, and I. Shelykh, Appl. Phys. Lett. 97, 201111 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    M. A. Kaliteevskii and K. A. Ivanov, Tech. Phys. Lett. 39, 91 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    I. G. Savenko, I. A. Shelykh, and M. A. Kaliteevski, Phys. Rev. Lett. 107, 027401 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    T. C. H. Liew, M. M. Glazov, K. V. Kavokin, I. A. Shelykh, M. A. Kaliteevski, and A. V. Kavokin, Phys. Rev. Lett. 110, 04 402 (2013).CrossRefGoogle Scholar
  8. 8.
    D. C. Bertolet, J. Hsu, F. Agahi, and K. Lau, J. Electron. Mater. 19, 967 (1990).ADSCrossRefGoogle Scholar
  9. 9.
    P. Cristofolini, G. Christmann, S. I. Tsintzos, G. Deligeorgis, G. Konstantinidis, Z. Hatsopoulos, P. G. Savvidis, and J. J. Baumberg, Science 336(6082), 704 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    M. H. Szymanska, Science 336(6082), 679 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • I. V. Iorsh
    • 1
    • 2
    • 3
  • M. A. Kaliteevski
    • 1
    • 2
    • 3
  • K. A. Ivanov
    • 1
    • 2
    • 3
  • K. V. Kavokin
    • 1
    • 2
    • 3
  1. 1.St. Petersburg Academic University, Nanotechnology Research and Education CenterRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  3. 3.St. Petersburg State UniversityPeterhof, St. PetersburgRussia

Personalised recommendations