Technical Physics Letters

, Volume 39, Issue 7, pp 629–631 | Cite as

Temperature dependence of the luminescence intensity in optical fibers of oxyfluoride glass with CdS and CdS x Se1 − x quantum dots

  • D. S. Agafonova
  • E. V. Kolobkova
  • A. I. Sidorov
Article

Abstract

The temperature dependences of the integral luminescence intensity in optical fibers of oxyfluoride glass with CdS and CdS x Se1 − x quantum dots have been studied in a temperature range of 25–250°C. It is established that heating in this range leads to luminescence quenching in accordance with a nearly linear law. This effect can be used for the creation of fiber-optic temperature sensors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. A. Rempel’, Usp. Khim. 76, 474 (2007).Google Scholar
  2. 2.
    S. Nizamoglu, T. Qzel, E. Sari, and H. V. Demir, Nanotecnology 18, 065 709 (2007).Google Scholar
  3. 3.
    G. Morello, M. de Giorgi, S. Kudera, L. Manna, R. Cingolani, and M. Anni, J. Phys. Chem. C 111, 5846 (2007).CrossRefGoogle Scholar
  4. 4.
    C. M. Donegá, M. Bode, and A. Meijerink, Phys. Rev. B 74, 085320 (2006).ADSCrossRefGoogle Scholar
  5. 5.
    D. S. Agafonova, E. V. Kolobkova, and A. I. Sidorov, 38, 1034 (2012).Google Scholar
  6. 6.
    S. Coe, W. K. Woo, M. G. Bawendi, and V. Bulovic, Nature 420, 800 (2002).ADSCrossRefGoogle Scholar
  7. 7.
    N. Tessler, V. Medvedev, M. Kazes, S. H. Kan, U. Banin, Science 295, 1506 (2002).ADSCrossRefGoogle Scholar
  8. 8.
    N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).ADSCrossRefGoogle Scholar
  9. 9.
    J. Bomm, A. Buchtemann, A. J. Chatten, R. Bose, D. J. Farrell, N. L. A. Chan, Y. Xiao, L. H. Slooff, T. Meyer, and A. Meyer, Solar Energy Mater. Sol. Cells 95, 2087 (2011).CrossRefGoogle Scholar
  10. 10.
    H. Sakaue, A. Aikawa, Y. Iijima, T. Kuriki, and T. Miyazaki, in Quantum Dots — A Variety of New Applications, Ed. by Al-Ahmadi (InTech, 2012), p. 137.Google Scholar
  11. 11.
    H. C. Y. Yu, A. Argyros, G. Barton, M. A. Eijkelenborg, C. Barbe, K. Finnie, L. Kong, F. Ladouceur, and S. McNiven, Opt. Express 15, 9989 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    P. R. Watekar, H. Yang, S. Ju, and W. Han, Opt. Express 17, 3157 (2009).ADSCrossRefGoogle Scholar
  13. 13.
    Y. Zhao, C. Riemersma, F. Pietra, R. Koole, C. Donega, and A. Meijerink, ACS Nano 6, 9058 (2012).CrossRefGoogle Scholar
  14. 14.
    A. N. Reznitskii, A. A. Klochikhin, and S. A. Permogorov, Fiz. Tverd. Tela 54, 115 (2012).Google Scholar
  15. 15.
    A. S. Kuznetsov, J. J. Velázquez, V. K. Tikhomirov, et al., Appl. Phys. Lett. 101, 251106 (2012).ADSCrossRefGoogle Scholar
  16. 16.
    F. Zhang, B. Wang, F. Pang, and T. Wang, in Proceedings of SPIE-OSA-IEEE Asia Communications and Photonics, Proc. SPIE 7990, 312 (2010).Google Scholar
  17. 17.
    Z. Y. Zhang, T. V. Grattan, A. W. Palmer, and B. T. Meggitt, Rev. Sci. Instrum. 69, 3210 (1997).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • D. S. Agafonova
    • 1
    • 2
  • E. V. Kolobkova
    • 1
    • 2
  • A. I. Sidorov
    • 1
    • 2
  1. 1.St. Petersburg State Electrotechnical UniversitySt. PetersburgRussia
  2. 2.St. Petersburg State University of Information Technologies, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations