Technical Physics Letters

, Volume 39, Issue 3, pp 308–311 | Cite as

Determining instability modes in a gas flame

  • S. S. Abdurakipov
  • V. M. Dulin
  • D. M. Markovich
  • K. Hanjalić
Article

Abstract

The efficiency of modern methods of experimental hydromechanics for determining local and global instability modes in turbulent flows is demonstrated. The particle image velocimetry technique and the method of dynamic mode decomposition for the analysis of instantaneous flow velocity fields were used to study non-swirling and strongly swirling jet flows of rich propane-air mixture issuing into atmospheric air and burning as a suspended flame. Modes induced by the Kelvin-Helmholtz instability and vortex core precession are determined.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Holmes, J. L. Lumley, and G. Berkooz, Turbulence, Coherent Structures, Dynamical Systems and Symmetry (Cambridge University Press, Cambridge, 1996).MATHCrossRefGoogle Scholar
  2. 2.
    B. Hof, J. Westerweel, T. M. Schneider, and B. Eckhardt, Nature 443, 59 (2006).ADSCrossRefGoogle Scholar
  3. 3.
    P. J. Schmid, J. Fluid Mech. 656, 5 (2010).MathSciNetADSMATHCrossRefGoogle Scholar
  4. 4.
    S. Boyd, EE263 (Lecture Course): Introduction to Linear Dynamical Systems (Information Systems Laboratory, Department of Electrical Engineering, Stanford University).Google Scholar
  5. 5.
    I. Mezic, S. Loire, V. A. Fonoberov, and P. Hogan, Science 330, 486 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    G. Broze and F. Hussain, J. Fluid Mech. 311, 37 (1996).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    K. Oberleithner, M. Sieber, C. N. Nayeri, et al., J. Fluid Mech. 679, 383 (2011).MATHCrossRefGoogle Scholar
  8. 8.
    A. Gupta, D. Lilley, and N. Syred, Swirl Flows (Abacus Press, Kent, UK, 1984).Google Scholar
  9. 9.
    S. V. Alekseenko, V. M. Dulin, Yu. S. Kozorezov, et al., Flow Turbul. Combust. 87, 569 (2011).MATHCrossRefGoogle Scholar
  10. 10.
    D. M. Markovich and M. P. Tokarev, Vychisl. Met. Program. 9, 311 (2008).Google Scholar
  11. 11.
    M. P. Tokarev, D. M. Markovich, and A. V. Bil’skii, Vychisl. Tekhnol. 2, 1 (2007).Google Scholar
  12. 12.
    B. M. Cetegen and Y. Dong, Exp. Fluids 28, 546 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • S. S. Abdurakipov
    • 1
  • V. M. Dulin
    • 1
  • D. M. Markovich
    • 1
  • K. Hanjalić
    • 1
  1. 1.Kutateladze Institute of Thermophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Department of Multiscale Physics, Faculty of Applied SciencesDelft University of TechnologyDelftThe Netherlands

Personalised recommendations