Technical Physics Letters

, Volume 39, Issue 2, pp 185–188

Thermoactivated fracture of graphene subjected to tensile strain

Article

Abstract

Graphene draws the attention of researchers due to its unique properties-in particular, record-high tensile strength. The time to fracture (TTF) of defect-free graphene strained by tension at a nonzero temperature has been studied by the method of molecular dynamics (MD). It is established that the time to thermoactivated fracture has a probabilistic character and obeys an exponential distribution. The mean TTF is proportional to the area of the graphene sheet and obeys the Arrhenius-Zhurkov law as a function of temperature and applied stress. The dependence of the activation energy for graphene fracture on the applied stress and sample area has been extrapolated to values of these parameters relevant for practical applications. The mechanism of graphene fracture has been analyzed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).ADSCrossRefGoogle Scholar
  2. 2.
    A. H. Castro Neto and K. Novoselov, Rep. Progr. Phys. 74, 082501 (2011).ADSCrossRefGoogle Scholar
  3. 3.
    W. Choi, I. Lahiri, R. Seelaboyina, et al., Crit. Rev. Solid State 35, 52 (2010).CrossRefGoogle Scholar
  4. 4.
    Y. Shao, J. Wang, H. Wu, et al., Electroanalysis 22, 1027 (2010).CrossRefGoogle Scholar
  5. 5.
    X. Li, K. Maute, M. L. Dunn, et al., Phys. Rev. B 81, 245318 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    F. M. D. Pellegrino, G. G. N. Angilella, and R. Pucci, Phys. Rev. B 81, 035411 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    M. J. Majid and S. S. Savinskii, Tech. Phys. Lett. 37, 519 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    Yu. A. Baimova, S. V. Dmitriev, A. V. Savin, and Yu. S. Kivshar, Phys. Solid State 54, 866 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    T. Zhu and J. Li, Prog. Mater. Sci. 55, 710 (2010).CrossRefGoogle Scholar
  10. 10.
    S. V. Dmitriev, Yu. A. Baimova, A. V. Savin, and Yu. S. Kivshar, JETP Lett. 93, 571 (2011).ADSCrossRefGoogle Scholar
  11. 11.
    A. B. Zhao and N. R. Aluru, J. Appl. Phys. 108, 064321 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 11, 78 (1957).Google Scholar
  13. 13.
    S. N. Zhurkov, J. Fract. Mech. 1, 311 (1965).Google Scholar
  14. 14.
    S. N. Zhurkov, Vestn. Akad. Nauk SSSR, No. 3, 46 (1968).Google Scholar
  15. 15.
    J. Bailey, The Glass Industry 20, 21 (1939).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute for Metals Superplasticity ProblemsRussian Academy of SciencesUfa, BashkortostanRussia

Personalised recommendations