Advertisement

Technical Physics Letters

, Volume 38, Issue 3, pp 268–271 | Cite as

Evolution of geodesic acoustic mode in ohmic H-mode in TUMAN-3M tokamak

  • L. G. Askinazi
  • M. I. Vildjunas
  • N. A. Zhubr
  • A. D. Komarov
  • V. A. Kornev
  • S. V. Krikunov
  • L. I. Krupnik
  • S. V. Lebedev
  • V. V. Rozhdestvensky
  • M. Tendler
  • A. S. Tukachinsky
  • S. M. Khrebtov
Article

Abstract

The behavior of a geodesic acoustic mode (GAM) in the TUMAN-3M tokamak has been experimentally studied using the heavy-ion beam probing technique. Oscillations of the electric potential under the action of a GAM localized at the plasma periphery have been detected. The GAM was observed in the regime of low confinement (L-mode) with low plasma density (∼0.8 × 1019 m−3) and disappeared upon the transition to a high confinement regime (H-mode). The possible role of GAM as a precursor of the improved confinement (LH-transition) is discussed.

Keywords

Technical Physic Letter Plasma Potential Radial Electric Field Background Turbulence Confinement Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Winsor, J. Johnson, and J. Dawson, Phys. Fluids 11, 2448 (1968).ADSCrossRefGoogle Scholar
  2. 2.
    A. Fujisawa, T. Ido, A. Shimizu, et al., Nucl. Fusion 47, S718 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    P. H. Diamond, S.-I. Itoh, K. Itoh, et al., Plasma Phys. Control. Fusion 47, R35 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    G. D. Conway, C. Angioni, F. Ryter, et al., Phys. Rev. Lett. 106, 065001 (2011).ADSCrossRefGoogle Scholar
  5. 5.
    G. M. Vorobiev et al., Sov. J. Plasma Phys. (Fiz. Plazmy) 9, 65 (1983).Google Scholar
  6. 6.
    L. G. Askinazi, V. A. Kornev, S. V. Krikunov, et al., Proceedings of the 34th EPS Conf. on Plasma Physics (July 2–6, 2007, Warsaw, 2007), ECA 31, 5092 (2007).Google Scholar
  7. 7.
    L. G. Askinazi, V. A. Kornev, S. V. Lebedev, et al., Rev. Sci. Instrum. 75, 3517 (2004).ADSCrossRefGoogle Scholar
  8. 8.
    L. G. Askinazi, V. E. Golant, V. A. Kornev, et al., Plasma Phys. Control. Fusion 48, A85 (2006).ADSCrossRefGoogle Scholar
  9. 9.
    E. Kaveeva, V. Rozhansky, and M. Tendler, Nucl. Fusion 48, 075003 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    T. Ido et al., Plasma Phys. Control. Fusion 48, 41 (2006).ADSCrossRefGoogle Scholar
  11. 11.
    S. V. Lebedev, L. G. Askinazi, F. V. Chernyshev, et al., Nucl. Fusion 49, 085029 (2009).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. G. Askinazi
    • 1
    • 2
    • 3
  • M. I. Vildjunas
    • 1
    • 2
    • 3
  • N. A. Zhubr
    • 1
    • 2
    • 3
  • A. D. Komarov
    • 1
    • 2
    • 3
  • V. A. Kornev
    • 1
    • 2
    • 3
  • S. V. Krikunov
    • 1
    • 2
    • 3
  • L. I. Krupnik
    • 1
    • 2
    • 3
  • S. V. Lebedev
    • 1
    • 2
    • 3
  • V. V. Rozhdestvensky
    • 1
    • 2
    • 3
  • M. Tendler
    • 1
    • 2
    • 3
  • A. S. Tukachinsky
    • 1
    • 2
    • 3
  • S. M. Khrebtov
    • 1
    • 2
    • 3
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Kharkiv Institute of Physics and TechnologyNational Scientific CenterKharkivUkraine
  3. 3.Royal Institute of TechnologyStockholmSweden

Personalised recommendations