Advertisement

Technical Physics Letters

, Volume 37, Issue 12, pp 1139–1141 | Cite as

Parametric enhancement of electrocaloric effect by periodically varying external field

  • A. S. Starkov
  • O. V. PakhomovEmail author
  • I. A. Starkov
Article

Abstract

The mutual influence of an external electric field and mechanical stresses on the electrocaloric effect has been studied. Under certain conditions, the varying external field produces parametric enhancement of the electrocaloric effect. Using this phenomenon, it is possible to realize the Carnot cycle in ferroelectric energy converters and solid-state coolers.

Keywords

Technical Physic Letter Magnetocaloric Effect Thermodynamic Cycle Lead Titanate Carnot Cycle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. M. Tishin and Y. J. Spichkin, The Magnetocaloric Effect and Its Applications (IOP Publishing Ltd., Bristol, UK, 2003).CrossRefGoogle Scholar
  2. 2.
    Y. V. Synyavsky and V. M. Brodyansky, Ferroelectrics 131, 321 (1992).CrossRefGoogle Scholar
  3. 3.
    C. G. Wiseman, IEEE Trans. Electron. Devices ED-16, 588 (1969).CrossRefGoogle Scholar
  4. 4.
    W. N. Lawless, Phys. Rev. 16(1), 433 (1977).CrossRefADSGoogle Scholar
  5. 5.
    G. Akcay, S. P. Alpay, J. V. Matese, and G. A. Rossetti, Appl. Phys. Lett. 90, 252909 (2007).CrossRefADSGoogle Scholar
  6. 6.
    S. G. Lu, B. Rozic, and Q. M. Zhang, Appl. Phys. Lett. 97, 162904 (2010).CrossRefADSGoogle Scholar
  7. 7.
    B. Neese, B. Chu, S. G. Lu, Y. Wang, E. Furman, and Q. M. Zhang, Science 321, 821 (2008).CrossRefADSGoogle Scholar
  8. 8.
    W. Thomson, Phil. Mag. Ser. 5 5(28), 4 (1878).CrossRefGoogle Scholar
  9. 9.
    A. S. Starkov and O. V. Pakhomov, Pis’ma Zh. Tekh. Fiz. 36(2), 3 (2010)[Tech. Phys. Lett. 36, 1 (2010)].Google Scholar
  10. 10.
    A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, Pis’ma Zh.Eksp. Teor. Fiz. 91, 556 (2010) [JETP Lett. 91, 507 (2010)].Google Scholar
  11. 11.
    S. F. Karmanenko, O. V. Pakhomov, A. M. Prudan, A. S. Starkov, and A. V. Es’kov, J. Europ. Ceramic Society 27, 310920 (2007).Google Scholar
  12. 12.
    A. Khodayari and S. Mohammadi, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58(3), 503 (2011).CrossRefGoogle Scholar
  13. 13.
    A. V. Es’kov, S. F. Karmanenko, O. V. Pakhomov, and A. S. Starkov, Fiz. Tverd. Tela 51, 1483 (2009) [Phys. Solid State 51, 1574 (2009)].Google Scholar
  14. 14.
    V. L. Ginzburg, Usp. Fiz. Nauk 38, 490 (1949).Google Scholar
  15. 15.
    S. Prosandeev, I. Ponomareva, and L. Bellaiche, Phys. Rev. B 78, 052103 (2008).CrossRefADSGoogle Scholar
  16. 16.
    Y. Sun, J. Kamarad, Z. Arnold, Zn. Kou, and Z. Cheng, Appl. Phys. Lett. 88, 102505 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. S. Starkov
    • 1
    • 2
  • O. V. Pakhomov
    • 1
    • 2
    Email author
  • I. A. Starkov
    • 1
    • 2
  1. 1.St. Petersburg State University of Low-Temperature and Food TechnologiesSt. PetersburgRussia
  2. 2.Institute for MicroelectronicsTechnische Universität WienWienAustria

Personalised recommendations