Technical Physics Letters

, Volume 37, Issue 12, pp 1127–1131 | Cite as

Formation of internal transport barriers in Globus-M tokamak in regime with early neutral heating beam switch-on

  • G. S. Kurskiev
  • V. K. Gusev
  • S. Yu. Tolstyakov
  • A. A. Berezutskii
  • V. V. Bulanin
  • V. I. Varfolomeev
  • M. M. Kochergin
  • V. B. Minaev
  • E. E. Mukhin
  • M. I. Patrov
  • A. V. Petrov
  • Yu. V. Petrov
  • N. V. Sakharov
  • V. V. Semenov
  • A. Yu. Yashin
  • N. A. Khromov
Article

Abstract

A series of experiments have been performed on the Globus-M spherical tokamak under conditions with additional plasma heating by a beam of neutral atoms at the stage of plasma current buildup. This regime allowed a region with negative magnetic shear to be formed in the inner plasma region adjacent to the magnetic axis. Under these conditions, the stability margin coefficient at the axis was greater than unity. This scenario of plasma heating leads to the transition to a regime of improved confinement with the formation of a broad temperature profile and peaked electron density profile due to the formation on internal barriers. Results of experiments and numerical simulations of transport processes using the ASTRA code are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. K. Gusev et al., Nucl. Fusion 49(10), 104021 (2009).CrossRefADSGoogle Scholar
  2. 2.
    B. B. Ayushin et al., Fiz. Plazmy 34(2), 99 (2008) [Plasma Phys. Rep. 34, No. 2 (2008)].Google Scholar
  3. 3.
    G. V. Pereverzev and P. N. Yushmanov, Max-Plank IPP Report (2002), pp. 5–98.Google Scholar
  4. 4.
    W. A. Houlberg et al., Phys. Plasmas 4, 3230 (1997).CrossRefADSGoogle Scholar
  5. 5.
    L. L. Lao et al., Nucl. Fusion 25, 1611 (1985).CrossRefGoogle Scholar
  6. 6.
    V. K. Gusev et al., Zh. Tekh. Fiz. 76(8), 25 (2006).Google Scholar
  7. 7.
    Progress in the ITGER Physics Basis, Nucl. Fusion 47 (2007).Google Scholar
  8. 8.
    V. V. Bulanin, V. I. Varfolomeev, V. K. Gusev, et al., Pis’ma Zh. Tekh. Fiz. 37(7), 103 (2011) [Tech. Phys. Lett. 37, 340 (2011)].Google Scholar
  9. 9.
    V. V. Bulanin, L. G. Askinazi, S. V. Lebedev, et al., Plasma Phys. Control. Fusion 48, A101 (2006).CrossRefADSGoogle Scholar
  10. 10.
    G. Tresset, X. Litaudon, D. Moreau, et al., Nucl. Fusion 42, 520 (2002).CrossRefADSGoogle Scholar
  11. 11.
    R. J. Akers et al., Plasma Phys. Control. Fusion 45, A175 (2003).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • G. S. Kurskiev
    • 1
    • 2
  • V. K. Gusev
    • 1
    • 2
  • S. Yu. Tolstyakov
    • 1
    • 2
  • A. A. Berezutskii
    • 1
    • 2
  • V. V. Bulanin
    • 1
    • 2
  • V. I. Varfolomeev
    • 1
    • 2
  • M. M. Kochergin
    • 1
    • 2
  • V. B. Minaev
    • 1
    • 2
  • E. E. Mukhin
    • 1
    • 2
  • M. I. Patrov
    • 1
    • 2
  • A. V. Petrov
    • 1
    • 2
  • Yu. V. Petrov
    • 1
    • 2
  • N. V. Sakharov
    • 1
    • 2
  • V. V. Semenov
    • 1
    • 2
  • A. Yu. Yashin
    • 1
    • 2
  • N. A. Khromov
    • 1
    • 2
  1. 1.Ioffe Physical Technical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.St. Petersburg State Polytechnical UniversitySt. PetersburgRussia

Personalised recommendations