Technical Physics Letters

, Volume 37, Issue 12, pp 1091–1095 | Cite as

Scattering in elements of plasmon optics suppressed by two-layer dielectric structures

  • E. A. Bezus
  • L. L. Doskolovich
  • N. L. Kazanskiy
  • V. A. Soifer


Based on the results of simulations in the framework of a rigorous electromagnetic theory of diffraction, it is shown that a structure comprising two isotropic dielectric layers on a metal surface can be used to suppress parasitic scattering in elements of plasmon optics. The proposed dielectric structure makes possible a tenfold decrease (to 1–3%) in the level of scattering losses. This approach can also be applied in creating various elements of plasmon optics, in particular, lenses and Bragg reflection gratings.


Technical Physic Letter Plasmon Mode Dielectric Structure Transverse Profile Tenfold Decrease 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. K. Gramotnev and S. I. Bozhevolnyi, Nature Photonics 4, 83 (2010).CrossRefADSGoogle Scholar
  2. 2.
    M. U. Gonzalez, J.-C. Weeber, A.-L. Baudrion, et al., Phys. Rev. 73(15), 155416 (2006).CrossRefGoogle Scholar
  3. 3.
    X.-S. Lin and X.-G. Huang, Opt. Lett. 33(23), 2874 (2008).CrossRefADSGoogle Scholar
  4. 4.
    S. Randhawa, M. U. Gonzalez, J. Renger, et al., Opt. Express 18(14), 14496 (2010).CrossRefADSGoogle Scholar
  5. 5.
    Z. Liu, J. M. Steele, W. Srituravanich, et al., Nano Lett. 5(9), 1726 (2005).CrossRefADSGoogle Scholar
  6. 6.
    G. M. Lerman, A. Yanai, and U. Levy, Nano Lett., 9(5), 2139 (2009).CrossRefADSGoogle Scholar
  7. 7.
    E. A. Bezus, L. L. Doskolovich, N. L. Kazanskiy, et al., J. Opt. 12(1), 015001 (2010).CrossRefADSGoogle Scholar
  8. 8.
    J. Elser and V. A. Podolskiy, Phys. Rev. Lett. 100(6), 066402 (2008).CrossRefADSGoogle Scholar
  9. 9.
    R. F. Oulton, D. F. P. Pile, Y. Liu, and X. Zhang, Phys. Rev. 76(3), 035408 (2007).CrossRefADSGoogle Scholar
  10. 10.
    A. Hohenau, J. R. Krenn, A. L. Stepanov, et al., Opt. Lett. 30(8), 893 (2005).CrossRefADSGoogle Scholar
  11. 11.
    Y. Liu, T. Zentgraf, G. Bartal, and X. Zhang, Nano Lett. 10(6), 1991 (2010).CrossRefADSGoogle Scholar
  12. 12.
    M. Zhong-Tuan, W. Pei, C. Yong, et al., Chin. Phys. Lett. 23(9), 2545 (2006).CrossRefADSGoogle Scholar
  13. 13.
    I. Avrutsky, R. Soref, and W. Buchwald, Opt. Express 18(1), 348 (2010).CrossRefADSGoogle Scholar
  14. 14.
    D. G. Sannikov and D. I. Sementsov, Pis’ma Zh. Tekh. Fiz. 29(9), 1 (2003) [Tech. Phys. Lett. 29, 353 (2003)].Google Scholar
  15. 15.
    W. L. Barnes, J. Opt. A: Pure Appl. Opt. 8(4), S87 (2006).CrossRefADSGoogle Scholar
  16. 16.
    M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12(5), 1068 (1995).CrossRefADSGoogle Scholar
  17. 17.
    E. Silberstein, P. Lalanne, J.-P. Hugonin, and Q. Cao, J. Opt. Soc. Am. A 18(11), 2865 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • E. A. Bezus
    • 1
    • 2
  • L. L. Doskolovich
    • 1
    • 2
  • N. L. Kazanskiy
    • 1
    • 2
  • V. A. Soifer
    • 1
    • 2
  1. 1.Image Processing Systems InstituteRussian Academy of SciencesSamaraRussia
  2. 2.Samara State Aerospace UniversitySamaraRussia

Personalised recommendations