Advertisement

Technical Physics Letters

, Volume 36, Issue 7, pp 660–662 | Cite as

On the thermal conductivity of nanofluids

  • V. Ya. Rudyak
  • A. A. Belkin
  • E. A. Tomilina
Article

Abstract

The dependence of the effective thermal conductivity λ of nanofluids on the properties of dispersed nanoparticles has been studied by the molecular dynamics method. It is established that the thermal conductivity of a nanofluid always exceeds that of the carrier medium, the excess depending on the volume fraction of nanoparticles, their masses, and sizes. An increase in the nanoparticle mass at a constant size leads to a more pronounced increase in λ than does the growth in size at a constant mass, which implies that the density of dispersed nanoparticles is an important factor that determines the thermal conductivity of nanofluids.

Keywords

Thermal Conductivity Molecular Dynamic Simulation Technical Physic Letter Effective Thermal Conductivity Molecular Dynamic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Keblinski, J. A. Eastman, and D. G. Cahill, Mater. Today 8(6), 36 (2005).CrossRefGoogle Scholar
  2. 2.
    P. Keblinski, R. Prasher, and J. Eapen, J. Nanopart. Res. 10, 1089 (2008).CrossRefGoogle Scholar
  3. 3.
    S. A. Putnam, D. G. Cahill, and P. V. Braun, J. Appl. Phys. 99, 084 308 (2006).CrossRefGoogle Scholar
  4. 4.
    D. N. Kumar, H. E. Patel, V. R. Rajeev Kumar, T. Sundararajan, T. Pradeep, and S. K. Das, Phys. Rev. Lett. 93, 144 301 (2004).CrossRefGoogle Scholar
  5. 5.
    V. Ya. Rudyak and S. L. Krasnolutskii, Dokl. Akad. Nauk 392, 484 (2003) [Dokl. Phys. 48, 583 (2003)].Google Scholar
  6. 6.
    V. Ya. Rudyak, A. A. Belkin, and V. V. Egorov, Zh. Tekh. Fiz. 79(8), 18 (2009) [Tech. Phys. 54, 1102 (2009)].Google Scholar
  7. 7.
    J. A. Eastman, U. S. Choi, S. Li, G. Soyez, L. J. Thompson, and R. J. DiMelfi, Invited Paper to Intern. Symp. on Metastable, Mechanically Alloyed, and Nanocrystalline Materials (December 7–12, 1998, Wollongong, Australia).Google Scholar
  8. 8.
    H. T. Zhu, C. Y. Zhang, Y. M. Tang, and J. X. Wang, J. Phys. Chem. C 111, 1646 (2007).CrossRefGoogle Scholar
  9. 9.
    V. Ya. Rudyak, S. L. Krasnolutskii, A. G. Nasibulin, and E. I. Kauppinen, Dokl. Akad. Nauk 386, 624 (2002) [Dokl. Phys. 47, 758 (2002)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. Ya. Rudyak
    • 1
  • A. A. Belkin
    • 1
  • E. A. Tomilina
    • 1
  1. 1.Novosibirsk State University of Architecture and Civil EngineeringNovosibirskRussia

Personalised recommendations