Technical Physics Letters

, Volume 34, Issue 6, pp 467–471 | Cite as

Anisotropy of the photoelectric properties of porous nanographite films

  • G. M. Mikheev
  • R. G. Zonov
  • A. N. Obraztsov
  • V. M. Styapshin
Article

Abstract

The influence of the orientation of platelike grains in nanographite (NG) films on the efficiency of photoelectric conversion of pulsed laser radiation has been studied. The initial orientation of NG grains perpendicular to the substrate surface was determined by a plasmachemical process used for the film deposition. A change in the orientation of grains in the film as a result of mechanical smoothing action leads to the appearance of anisotropy in the photoelectric properties of samples.

PACS numbers

85.60.Gz 85.60.Bt 78.66.-w 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhang and S. Iijima, Phys. Rev. Lett. 82, 3472 (1999).CrossRefADSGoogle Scholar
  2. 2.
    Y. Kamada, N. Naka, N. Nagasawa, et al., Physica B 323, 239 (2002).CrossRefADSGoogle Scholar
  3. 3.
    I. A. Levitsky and W. B. Euler, Appl. Phys. Lett. 83, 1857 (2003).CrossRefADSGoogle Scholar
  4. 4.
    M. E. Itkis, F. Borondics, A. Yu, and R. C. Haddon, Science 312, 413 (2006).CrossRefADSGoogle Scholar
  5. 5.
    M. Freitag, Y. Martin, J. A. Misewich, et al., Nano Lett. 3, 1067 (2003).CrossRefGoogle Scholar
  6. 6.
    K. Balasubramanian, Y. Fan, M. Burghard, et al., Appl. Phys. Lett. 84, 2400 (2004).CrossRefADSGoogle Scholar
  7. 7.
    X. Qiu, M. Freitag, V. Perebeinos, and Ph. Avouris, Nano Lett. 5, 749 (2005).CrossRefGoogle Scholar
  8. 8.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. A. Svirko, Appl. Phys. Lett. 84, 4854 (2004).CrossRefADSGoogle Scholar
  9. 9.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Zh. Éksp. Teor. Fiz. 126, 1083 (2004) [JETP 99, 942 (2004)].Google Scholar
  10. 10.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Pis’ma Zh. Tekh. Fiz. 31(3), 11 (2005) [Tech. Phys. Lett. 31, 94 (2005)].Google Scholar
  11. 11.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, et al., Zh. Tekh. Fiz. 76(9), 81 (2006) [Tech. Phys. 51, 1190 (2006)].Google Scholar
  12. 12.
    I. Yu. Pavlovskiĭ and A. N. Obraztsov, Prib. Tekh. Éksp., No. 1, 152 (1998).Google Scholar
  13. 13.
    A. N. Obraztsov, I. Yu. Pavlovskiĭ, and A. P. Volkov, Zh. Tekh. Fiz. 71(11), 89 (2001) [Tech. Phys. 46, 1437 (2001)].Google Scholar
  14. 14.
    A. N. Obraztsov, A. P. Volkov, G. M. Mikheev, et al., Zh. Tekh. Fiz. 75(6), 136 (2005) [Tech. Phys. 50, 809 (2005)].Google Scholar
  15. 15.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and A. P. Volkov, Zh. Éksp. Teor. Fiz. 125, 548 (2004) [JETP 98, 483 (2004)].Google Scholar
  16. 16.
    B. N. Morozov and Yu. M. Aĭvazyan, Kvantovaya Élektron. (Moscow) 7, 5 (1980) [Sov. J. Quantum Electron. 10, 1 (1980)].Google Scholar
  17. 17.
    A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, Carbon 45, 2017 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • G. M. Mikheev
    • 1
  • R. G. Zonov
    • 1
  • A. N. Obraztsov
    • 2
  • V. M. Styapshin
    • 2
  1. 1.Institute of Applied Mechanics, Ural BranchRussian Academy of SciencesIzhevsk, UdmurtiaRussia
  2. 2.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations