Advertisement

Technical Physics Letters

, Volume 34, Issue 5, pp 401–404 | Cite as

Optical transmission decay dynamics in dual-frequency nematic liquid crystal cells

  • E. A. Konshina
  • M. A. Fedorov
  • L. P. Amosova
  • M. V. Isaev
  • D. S. Kostomarov
Article

Abstract

We have experimentally studied the S-effect dynamics in a dual-frequency nematic liquid crystal (NLC) cell. It is demonstrated that the optical transmission rise and decay times depend on the mode of control over the NLC director orientation in an applied electric field, including the rectangular (square-wave) dc voltage pulses and sinusoidal low-and high-frequency addressing schemes. It is established that the presence of a thin dielectric layer of amorphous hydrogenated carbon (a-C:H) at the NLC boundary can decrease by an order of magnitude the transmission decay time under the action of a high-frequency voltage as compared to the case of natural elastic relaxation in a cell where only the rise time is controlled.

PACS numbers

77.84.Nh 78.20.Fm 78.20.Jg 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y.-H. Wu, X. Liang, Y.-Q. Lu, et al., Appl. Opt. 44, 4394 (2005).CrossRefADSGoogle Scholar
  2. 2.
    Q. Wang and S. He, J. Mod. Opt. 53, 481 (2006).MATHCrossRefADSGoogle Scholar
  3. 3.
    S. A. Jewell and J. R. Sambles, Opt. Express 13, 2627 (2005).CrossRefADSGoogle Scholar
  4. 4.
    N. J. Mottram and C. V. Brown, Phys. Rev. E 74, 031703 (2006).Google Scholar
  5. 5.
    A. K. Kirby and G. D. Love, Opt. Express 13, 1470 (2004).CrossRefADSGoogle Scholar
  6. 6.
    E. A. Konshina and D. S. Kostomarov, Opt. Zh. 74(10), 88 (2007) [J. Opt. Technol. 74, 720 (2007)].Google Scholar
  7. 7.
    E. A. Konshina and M. A. Fedorov, Pis’ma Zh. Tekh. Fiz. 32(22), 15 (2006) [Tech. Phys. Lett. 32, 964 (2006)].Google Scholar
  8. 8.
    E. A. Konshina, M. A. Fedorov, and L. P. Amosova, Opt. Zh. 73(12), 9 (2006) [J. Opt. Technol. 73, 830 (2006)].Google Scholar
  9. 9.
    E. A. Konshina, M. A. Fedorov, L. P. Amosova, and Yu. M. Voronin, Zh. Tekh. Fiz. 78(2), 71 (2008) [Tech. Phys. 53, 211 (2008)].Google Scholar
  10. 10.
    A. B. Golovin, S. V. Shiyanovskii, and O. D. Lavrentovich, Appl. Phys. Lett. 83, 3864 (2003).CrossRefADSGoogle Scholar
  11. 11.
    P. D. Brimikombe, L. A. Parry-Jones, S. J. Elston, and E. P. Raynes, J. Appl. Phys. 98, 104104 (2005).Google Scholar
  12. 12.
    M. Mizusaki, T. Miyashita, T. Uchida, et al., J. Appl. Phys. 102, 014904 (2007).Google Scholar
  13. 13.
    E. A. Konshina, Zh. Tekh. Fiz. 70(3), 87 (2000) [Tech. Phys. 45, 374 (2000)].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. A. Konshina
    • 1
  • M. A. Fedorov
    • 1
  • L. P. Amosova
    • 1
  • M. V. Isaev
    • 1
  • D. S. Kostomarov
    • 1
  1. 1.St. Petersburg State University of Information Technology, Mechanics, and OpticsSt. PetersburgRussia

Personalised recommendations