Advertisement

Technical Physics Letters

, Volume 34, Issue 1, pp 30–33 | Cite as

Metal-insulator transition in graphite: A comparison to heterostructures with high carrier mobility

  • E. V. Konenkova
  • D. Grundler
  • M. Morgenstern
  • R. Wiesendanger
Article

Abstract

Conditions for a transition from the insulator (I) to metal (M) state in the electron system of highly oriented pyrolytic graphite (HOPG) have been studied by means of magnetotransport measurements in a broad temperature range (0.3–150 K). In magnetic fields below a certain critical value (B < B c ≈ 0.05 T), HOPG exhibits the classical magnetoresistance, while for B > B c, the temperature dependence of the resistance is determined by the state (insulator versus metal) of the electron system. The M-I transition in HOPG, by analogy with that in heterostructures with two-dimensional electron gas, obeys the power law T c ∞ (BB c) k (k = 0.25) and is related to the spin-orbit interaction of electron waves.

PACS numbers

71.30.+h 73.43.Qt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Kivelson, D. H. Lee, and S. C. Zhang, Phys. Rev. B 46, 2223 (1992).CrossRefADSGoogle Scholar
  2. 2.
    T. F. Rosenbaum, R. E. Milligan, M. A. Paalanen, et al., Phys. Rev. B 27, 7509 (1983).CrossRefADSGoogle Scholar
  3. 3.
    D. Shahar, D. C. Tsui, and J. E. Cunningham, Phys. Rev. B 52, 14 372 (1995).Google Scholar
  4. 4.
    E. Abrahams, S. V. Kravchenko, and M. P. Sarachik, Rev. Mod. Phys. 73, 251 (2001).CrossRefADSGoogle Scholar
  5. 5.
    Y. Kopelevich, J. H. S. Torres, R. R. da Silva, et al., Phys. Rev. Lett. 90, 156402 (2003).Google Scholar
  6. 6.
    M. Suzuki, I. S. Suzuki, R. Lee, and J. Walter, Phys. Rev. B 66, 014 533 (2002).Google Scholar
  7. 7.
    Y. Kopelevich, V. V. Lemanov, S. Moehlecke, and J. H. S. Torres, Fiz. Tela (St. Petersburg) 41, 2135 (1999) [Phys. Solid State 41, 1959 (1999)].Google Scholar
  8. 8.
    Y. Iye, Philos. Trans. R. Soc. A 356, 157 (1998).CrossRefADSGoogle Scholar
  9. 9.
    D. Yoshioka and H. Fukuyama, J. Phys. Soc. Jpn. 50, 725 (1981).CrossRefADSGoogle Scholar
  10. 10.
    H. Ochimizu, T. Takamasu, S. Takeyama, et al., Phys. Rev. B 46, 1986 (1992).CrossRefADSGoogle Scholar
  11. 11.
    T. Tokumoto, E. Jobiliong, E. S. Choi, et al., Solid State Commun. 129, 599 (2004).CrossRefADSGoogle Scholar
  12. 12.
    X. Du, S.-W. Tsai, D. L. Maslov, and A. F. Hebard, Phys. Rev. Lett. 94, 166601 (2005).Google Scholar
  13. 13.
    D. V. Khveshchenko, Phys. Rev. Lett. 87, 206401 (2001).Google Scholar
  14. 14.
    E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, Phys. Rev. B 66, 045108 (2002).Google Scholar
  15. 15.
    Y. Kopelevich, J. C. Medina Pantoya, R. R. da Silva, and S. Moehlecke, Phys. Rev. B 73, 165128 (2006).Google Scholar
  16. 16.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Fizmatlit, Moscow, 2002; Pergamon, Oxford, 1980), Part 1.Google Scholar
  17. 17.
    T. Tokumoto, E. Jobiliong, E. S. Choi, et al., Solid State Commun. 129, 599 (2004).CrossRefADSGoogle Scholar
  18. 18.
    A. M. M. Pruisken, Phys. Rev. Lett. 61, 1297 (1988).CrossRefADSGoogle Scholar
  19. 19.
    D. D. Bykanov, S. V. Novikov, T. A. Polyanskaya, and I. G. Savel’ev, Fiz. Tekh. Poluprovodn. (St. Petersburg) 36, 1475 (2002) [Semiconductors 36, 1389 (2002)].Google Scholar
  20. 20.
    L. W. Engel, D. Shahar, C. Kurdak, and D. C. Tsui, Phys. Rev. Lett. 71, 2638 (1993).CrossRefADSGoogle Scholar
  21. 21.
    S. Koch, R. J. Haug, K. V. Klitzing, and K. Ploog, Phys. Rev. B 43, 6828 (1991).CrossRefADSGoogle Scholar
  22. 22.
    S. W. Hwang, H. P. Wei, L. W. Engel, et al., Phys. Rev. B 48, 11416 (1993).Google Scholar
  23. 23.
    A. M. Finkelstein, Z. Phys. B 56, 189 (1984).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • E. V. Konenkova
    • 1
  • D. Grundler
    • 2
  • M. Morgenstern
    • 2
  • R. Wiesendanger
    • 3
  1. 1.Ioffe Physicotechnical InstituteRussian Academy of SciencesSt. PetersburgRussia
  2. 2.Institute of Applied PhysicsUniversity of HamburgHamburgGermany
  3. 3.Institute of Experimental Physics II, RWTH AachenAachenGermany

Personalised recommendations