Technical Physics Letters

, Volume 33, Issue 7, pp 586–589 | Cite as

Effect of electric field on the vapor-phase growth of carbon nanostructures

  • Al. A. Zakhidov
  • O. A. Klimenko
  • I. A. Popov
  • A. A. Zolotukhin
  • A. N. Obraztsov


A mathematical model of dc gas discharge plasma has been developed in order to determine the electric field strength at a substrate surface during plasmachemical deposition of carbon nanostructures. A numerical solution of the model equations has been obtained using the experimentally determined boundary conditions and model parameters. A comparison of the solution to experiment confirms the adequacy of the proposed mathematical model, which provides the electric field profiles and the electron and ion density distributions near the substrate surface. Estimations show that, for carbon nanostructures with a characteristic size of about 30 nm, the electric field strength at the surface is sufficiently high to provide for their directional growth along the field.

PACS numbers

52.65.Kj 52.77.Dq 81.15.Jj 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Fan, M. G. Chapline, N. R. Franklin, et al., Science 283, 512 (1999).CrossRefADSGoogle Scholar
  2. 2.
    A. N. Obraztsov, I. Yu. Pavlovskiĭ, and A. P. Volkov, Zh. Tekh. Fiz. 127(11), 89 (2001) [Zh. Tekh. Fiz. 46, 1437 (2001)].Google Scholar
  3. 3.
    A. A. Zolotukhin, A. N. Obraztsov, A. P. Volkov, and A. O. Ustinov, Pis’ma Zh. Tekh. Fiz. 124(9), 58 (2003) [Tech. Phys. Lett. 29, 380 (2003)].Google Scholar
  4. 4.
    G. M. Mikheev, R. G. Zonov, A. N. Obraztsov, and Yu. P. Svirko, Pis’ma Zh. Tekh. Fiz. 30(17), 88 (2004) [Tech. Phys. Lett. 30, 750 (2004)].Google Scholar
  5. 5.
    Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).Google Scholar
  6. 6.
    E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gas (Wiley, New York, 1988).Google Scholar
  7. 7.
    E. A. Mason and J. T. Vanderslice, Phys. Rev. 114, 497 (1959).CrossRefADSGoogle Scholar
  8. 8.
    G. J. M. Hagelaar, F. J. De Hoog, and G. M. W. Kroesen, Phys. Rev. E 62, 1452 (2000).CrossRefADSGoogle Scholar
  9. 9.
    H. W. Ellis, R. Y. Pai, E. W. McDaniel, et al., At. Data Nucl. Data Tables 17, 177 (1976).CrossRefADSGoogle Scholar
  10. 10.
    BOLSIG Boltzmann Solver for the SIGLO-Series 1.0, CPA, Toulouse & Kinema Sotfware, 1996.Google Scholar
  11. 11.
    L. C. Pitchford, S. V. O’Neil, and J. R. Rumble, Phys. Rev. A 23, 294 (1981).CrossRefADSGoogle Scholar
  12. 12.
    P. Van Der Donk, F. B. Yousif, J. B. A. Mitchell, and A. P. Hickman, Phys. Rev. Lett. 67, 42 (1991).CrossRefADSGoogle Scholar
  13. 13.
    FEMLAB Reference Manual (COMSOL AB, Stockholm, 2004).Google Scholar
  14. 14.
    M. Chhowalla, K. B. K. Teo, C. Ducati, et al., J. Appl. Phys. 90, 5308 (2001).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • Al. A. Zakhidov
    • 1
  • O. A. Klimenko
    • 1
  • I. A. Popov
    • 1
  • A. A. Zolotukhin
    • 1
  • A. N. Obraztsov
    • 1
  1. 1.Department of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations